Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(4): 043705, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243461

RESUMO

We present the design and prototype of a switchable electron mirror, along with a technique for driving it with an arbitrary pulse shape. We employ a general technique for electronic pulse-shaping, where high fidelity of the pulse shape is required, but the characteristics of the system, which are possibly nonlinear, are not known. This driving technique uses an arbitrary waveform generator to pre-compensate the pulse, with a simple iterative algorithm used to generate the input waveform. This is a broadly applicable, general method for arbitrary pulse shaping. Driving our switchable electron mirror with a flat-top pulse, we demonstrate an improvement in rms error of roughly two orders of magnitude compared to an uncompensated waveform. Our results demonstrate the feasibility of high fidelity waveform reproduction in the presence of nonidealities, with immediate applications in the realization of novel electron optical components.

2.
Nat Commun ; 10(1): 4561, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594938

RESUMO

Nanosecond temporal resolution enables new methods for wide-field imaging like time-of-flight, gated detection, and fluorescence lifetime. The optical efficiency of existing approaches, however, presents challenges for low-light applications common to fluorescence microscopy and single-molecule imaging. We demonstrate the use of Pockels cells for wide-field image gating with nanosecond temporal resolution and high photon collection efficiency. Two temporal frames are obtained by combining a Pockels cell with a pair of polarizing beam-splitters. We show multi-label fluorescence lifetime imaging microscopy (FLIM), single-molecule lifetime spectroscopy, and fast single-frame FLIM at the camera frame rate with 103-105 times higher throughput than single photon counting. Finally, we demonstrate a space-to-time image multiplexer using a re-imaging optical cavity with a tilted mirror to extend the Pockels cell technique to multiple temporal frames. These methods enable nanosecond imaging with standard optical systems and sensors, opening a new temporal dimension for wide-field low-light microscopy.

3.
Ultramicroscopy ; 207: 112834, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520925

RESUMO

Multi-pass transmission electron microscopy (MPTEM) has been proposed as a way to reduce damage to radiation-sensitive materials. For the field of cryo-electron microscopy (cryo-EM), this would significantly reduce the number of projections needed to create a 3D model and would allow the imaging of lower-contrast, more heterogeneous samples. We have designed a 10 keV proof-of-concept MPTEM. The column features fast-switching gated electron mirrors which cause each electron to interrogate the sample multiple times. A linear approximation for the multi-pass contrast transfer function (CTF) is developed to explain how the resolution depends on the number of passes through the sample.

4.
Sci Rep ; 7(1): 1699, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490730

RESUMO

Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities, including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.

5.
Opt Lett ; 41(24): 5744-5747, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973521

RESUMO

The iterative interaction of a photon with a sample can lead to increased sensitivity in measuring the properties of the samples, such as its refractive index or birefringence. Here we show that this principle can also be used to generate and sense states of light. In particular, we demonstrate a technique to generate states with high orbital angular momentum using a single-vortex phase plate (VPP). This is accomplished by placing the phase plate in a self-imaging cavity such that light interacts with it multiple times; for an ideal phase plate, this is equivalent to iterative applications of the angular momentum operator. Using a discrete VPP, we show that our setup realizes a high-dimensional generalization of the Pauli matrix σx, and that the created states show sub-diffraction limited features that might find applications in structured illumination microscopy.

6.
Nat Commun ; 7: 12858, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27670525

RESUMO

Microscopy of biological specimens often requires low light levels to avoid damage. This yields images impaired by shot noise. An improved measurement accuracy at the Heisenberg limit can be achieved exploiting quantum correlations. If sample damage is the limiting resource, an equivalent limit can be reached by passing photons through a specimen multiple times sequentially. Here we use self-imaging cavities and employ a temporal post-selection scheme to present full-field multi-pass polarization and transmission micrographs with variance reductions of 4.4±0.8 dB (11.6±0.8 dB in a lossless setup) and 4.8±0.8 dB, respectively, compared with the single-pass shot-noise limit. If the accuracy is limited by the number of detected probe particles, our measurements show a variance reduction of 25.9±0.9 dB. The contrast enhancement capabilities in imaging and in diffraction studies are demonstrated with nanostructured samples and with embryonic kidney 293T cells. This approach to Heisenberg-limited microscopy does not rely on quantum state engineering.

7.
Opt Lett ; 40(2): 260-3, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679859

RESUMO

Laser-triggered electron emission from sharp metal tips has been demonstrated in recent years as a high brightness, ultrafast electron source. Its possible applications range from ultrafast electron microscopy to laser-based particle accelerators to electron interferometry. The ultrafast nature of the emission process allows for the sampling of an instantaneous radio frequency (RF) voltage that has been applied to a field emitter. For proof-of-concept, we use an RF signal derived from our laser's repetition rate, mapping a 9.28 GHz signal in 22.4 fs steps with 28 mv accuracy.

8.
Phys Rev Lett ; 115(26): 264803, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26764997

RESUMO

The emission times of laser-triggered electrons from a sharp tungsten tip are directly characterized under ultrafast, near-infrared laser excitation at Keldysh parameters of 6.6<γ<19.1. Emission delays up to 10 fs are observed, which are inferred from the energy gain of photoelectrons emitted into a synchronously driven microwave cavity. Few femtosecond timing resolution is achieved in a configuration capable of measuring timing shifts up to 55 ps. The technique can also be used to measure the microwave phase inside the cavity with a precision below 70 fs upon the energy resolved detection of a single electron.

9.
Nat Commun ; 3: 922, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22735450

RESUMO

In LaAlO(3)/SrTiO(3) heterointerfaces, charge carriers migrate from the LaAlO(3) to the interface in an electronic reconstruction. Magnetism has been observed in LaAlO(3)/SrTiO(3), but its relationship to the interface conductivity is unknown. Here we show that reconstruction is necessary, but not sufficient, for the formation of magnetism. Using scanning superconducting quantum interference device microscopy we find that magnetism appears only above a critical LaAlO(3) thickness, similar to the conductivity. We observe no change in ferromagnetism with gate voltage, and detect ferromagnetism in a non-conducting p-type sample. These observations indicate that the carriers at the interface do not need to be itinerant to generate magnetism. The ferromagnetism appears in isolated patches whose density varies greatly between samples. This inhomogeneity strongly suggests that disorder or local strain generates magnetism in a population of the interface carriers.


Assuntos
Imãs/química , Óxidos/química , Estrôncio/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...