Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Phys Rev E ; 105(3-1): 034501, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428143

RESUMO

Molecular dynamics simulations were employed to investigate the impact of interactions between dendritic polyeclectrolytes and amphiphilic surfactants on the supramolecular complex formation. We recognize two crucial parameters that govern association of surfactants within dendrimers: surfactant hydrophobicity, ε^{*}, and dendrimer generation, G. We find that depending on the values of ε^{*} and G encapsulation of surfactants by dendrimers is either noncooperative or cooperative. The noncooperative binding is characterized by absorption of surfactants as unimers, whereas in cooperative binding absorption of unimers is followed by aggregate formation through hydrophobic attractions between the surfactant tails. Our results provide guidelines for controlled encapsulation of guest molecules in dendrimer-based guest-host complexes.

2.
Sci Rep ; 11(1): 8108, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854111

RESUMO

Langevin dynamics simulations are utilized to study the structure of a dendritic polyelectrolyte embedded in two component mixtures comprised of conventional (small) and bulky counterions. We vary two parameters that trigger conformational properties of the dendrimer: the reduced Bjerrum length, [Formula: see text], which controls the strength of electrostatic interactions and the number fraction of the bulky counterions, [Formula: see text], which impacts on their steric repulsion. We find that the interplay between the electrostatic and the counterion excluded volume interactions affects the swelling behavior of the molecule. As compared to its neutral counterpart, for weak electrostatic couplings the charged dendrimer exists in swollen conformations whose size remains unaffected by [Formula: see text]. For intermediate couplings, the absorption of counterions into the pervaded volume of the dendrimer starts to influence its conformation. Here, the swelling factor exhibits a maximum which can be shifted by increasing [Formula: see text]. For strong electrostatic couplings the dendrimer deswells correspondingly to [Formula: see text]. In this regime a spatial separation of the counterions into core-shell microstructures is observed. The core of the dendrimer cage is preferentially occupied by the conventional ions, whereas its periphery contains the bulky counterions.

3.
J Phys Chem B ; 124(36): 7957-7968, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790370

RESUMO

We report on the structure of dendritic polyelectrolytes accompanied by counterions in a good, salt-free, implicit solvent using Langevin dynamics simulations and a Flory-type approach. Our focus is on the modification of charged dendrimer conformations via the strength of electrostatic interactions and the counterion excluded volume. We study the effects caused by charges by varying the reduced Bjerrum length, λB*, between the extremes of weak and strong electrostatic interactions. The counterion excluded volume was controlled by the size of ions. We investigate counterions ranging from conventional ones, with the size comparable to the monomer size, to bulky ions. Our results indicate that, as compared to neutral dendrimers, dendritic polyelectrolytes exist in swollen conformations, and the degree of swelling changes non-monotonically with increasing λB*. For weak electrostatic couplings, counterion density within dendrimers is minor and their radius of gyration subtly exceeds the size of neutral dendrimers. For intermediate electrostatic couplings, Coulomb attraction between opposite charges promotes absorption of ions into dendrimers' pervaded volume and counterion condensation on charged monomers. As a result, counterion density inside dendrimers abruptly increases and the ionic size starts to play a crucial role. In this regime, we observe that swelling of dendrimers reaches its maximum and is more pronounced for bulky counterions. For strong electrostatic couplings, complete condensation of conventional counterions proceeds, whereas for bulky ions condensation remains partial. In this regime, dendrimers deswell. In particular, in the presence of conventional ions, dendrimers collapse into globules, while, for bulky counterions, deswelling is suppressed.

4.
J Chem Phys ; 149(18): 184301, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441911

RESUMO

New multi-reference, global ab initio potential energy surfaces (PESs) are reported for the interaction of Xe atoms with OH radicals in their ground X2Π and excited A2Σ+ states, together with the non-adiabatic couplings between them. The 2A' excited potential features a very deep well at the collinear Xe-OH configuration whose minimum corresponds to the avoided crossing with the 1A' PES. It is therefore expected that, as with collisions of Kr + OH(A), electronic quenching will play a major role in the dynamics, competing favorably with rotational energy transfer within the 2A' state. The surfaces and couplings are used in full three-state surface-hopping trajectory calculations, including roto-electronic couplings, to calculate integral cross sections for electronic quenching and collisional removal. Experimental cross sections, measured using Zeeman quantum beat spectroscopy, are also presented here for comparison with these calculations. Unlike similar previous work on the collisions of OH(A) with Kr, the surface-hopping calculations are only able to account qualitatively for the experimentally observed electronic quenching cross sections, with those calculated being around a factor of two smaller than the experimental ones. However, the predicted total depopulation of the initial rovibrational state of OH(A) (quenching plus rotational energy transfer) agrees well with the experimental results. Possible reasons for the discrepancies are discussed in detail.

5.
Phys Chem Chem Phys ; 20(26): 17818-17828, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29923568

RESUMO

G3-G9 dendritic polyelectrolytes accompanied by counterions are investigated using the Poisson-Boltzmann-Flory theory. Within this approach we solve numerically the Poisson-Boltzmann equation for the mean electrostatic potential and minimize the Poisson-Boltzmann-Flory free energy with respect to the size of the molecules. Such a scheme enables us to inspect the conformational and electrostatic properties of the dendrimers in equilibrium based on their response to varying the dendrimer generation. The calculations indicate that the G3-G6 dendrimers exist in the polyelectrolyte regime where absorption of counterions into the volume of the molecules is minor. Trapping of ions in the interior region becomes significant for the G7-G9 dendrimers and signals the emergence of the osmotic regime. We find that the behavior of the dendritic polyelectrolytes corresponds with the degree of ion trapping. In particular, in both regimes the polyelectrolytes are swollen as compared to their neutral counterparts and the expansion factor is maximal at the crossover generation G7.

6.
J Chem Phys ; 148(8): 084311, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495767

RESUMO

We present a new three-dimensional potential energy surface (PES) for the NH(X3Σ-)-He van der Waals system, which explicitly takes into account the NH vibrational motion. The NH-He PES was obtained using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = Q, 5, 6) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. Using this new PES, we have studied the spectroscopy of the NH-He complex and we have determined a new rotational constant that agrees well with the available experimental data. Collisional excitation of NH(X3Σ-) by He was also studied at the close-coupling level. Calculations of the collisional excitation cross sections of the fine-structure levels of NH by He were performed for energies up to 3500 cm-1, which yield, after thermal average, rate coefficients up to 350 K. The calculated rate coefficients are compared with available experimental measurements at room temperature, and a reasonably good agreement is found between experimental and theoretical data.

7.
J Acoust Soc Am ; 143(1): 489, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390778

RESUMO

The effects of perceptible whole-body vibrations on annoyance ratings of sonic booms and other impulsive environmental sounds experienced indoors were studied. Fifteen pairs of test subjects made annoyance ratings while seated in a living room environment. There were two chairs, one isolated from floor vibrations and the other not isolated, and every test subject rated all signals in both chairs. Halfway through each test session, subjects changed seats. Subjects who sat in the isolated chair first gave lower mean annoyance ratings in both halves of the test than subjects who sat in the non-isolated chair first. Annoyance predictions from models using both sound and vibration measures were closer to average annoyance ratings than predictions from a model using sound measures alone. Reformulation of the annoyance model revealed that the presence of perceptible vibration is equivalent to increasing acoustic metric Perceived Level by 4.8 dB when calculated on exterior signals and by 5.6 dB when calculated on interior signals.

8.
Phys Chem Chem Phys ; 20(4): 2693-2703, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29319706

RESUMO

The properties of a dendritic polyelectrolyte in equilibrium with a reservoir of monovalent salts are investigated using the cell model and the Poisson-Boltzmann-Flory theory. Within this approach we use the Debye-Hückel approximation to solve the Poisson-Boltzmann equation and minimize the semi-grand potential of the system with respect to the size of the molecule which enables us to inspect its conformations as well as the electric field, the ionic density profile, the overall charge density, the effective charge of the dendrimer and the osmotic pressure based on their response to the salt concentration and the dendrimer charge. The model predicts pronounced trapping of salt ions, a local charge neutrality and a zero electric field in the volume of the molecule as well as oscillations of the density profiles and the electric field in the vicinity of the dendrimer-bulk interface. As a result of ion trapping and screening of Coulomb interactions monovalent salts are found to have a minor effect on the size of the dendrimer. Specifically, the dendrimer exists in slightly swollen states as compared to the neutral molecule which indicates that the conformational properties of the polyelectrolyte depend weakly on monovalent salts. These observations harmonise with the equilibrium behavior of the dendrimer pressure, the internal pressure and the bulk pressure, respectively.

9.
Phys Chem Chem Phys ; 20(8): 5427-5434, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28967011

RESUMO

Atomic sulfur and silicon are important constituents of the interstellar matter and are both used as tracers of the physical conditions in interstellar shocks and outflows. We present an investigation of the spin-orbit (de-)excitation of S(3P) and Si(3P) atoms induced by collisions with helium with the aim to improve the determination of atomic sulfur and silicon abundances in the interstellar medium from S and Si emission spectra. Quantum-mechanical calculations have been performed in order to determine rate coefficients for the fine-structure transitions in the 5-1000 K temperature range. The scattering calculations are based on new highly correlated ab initio potentials. The theoretical results show that the (de-)excitation of Si is much faster than that of S. The rate coefficients deduced from this study are in good agreement with previous experimental and theoretical findings despite some deviations at low temperatures. From the computation of critical densities defined as the ratios between Einstein coefficients and the sum of the relevant collisional de-excitation rate coefficients, we show that local thermodynamic equilibrium conditions are not fulfilled for analyzing S and Si emission spectra observed in the interstellar medium. Hence, the present rate coefficients will be extremely useful for the accurate determination of interstellar atomic sulfur and silicon abundances.

10.
Theriogenology ; 89: 250-254, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28043359

RESUMO

Research was conducted to determine the effect of altrenogest and exposure to exogenous gonadotropins on ovarian function in prepubertal and mature gilts. Crossbred, presumably sexually mature gilts (n = 51), were fed with altrenogest for 18 consecutive days and the day after the last feeding with altrenogest, gilts were treated with eCG and 72 hours later challenged with hCG. Animals were slaughtered on Days 10 to 13 of their gonadotropins synchronized estrous cycle. Ovaries were examined for the number of CL, number of follicular cysts, and presence of corpora albicantia. Gilts were divided into two groups: those possessing corpora albicantia (group A-mature; n = 36) and those without corpora albicantia (Group W-prepubertal; n = 15) on their ovaries. In addition, each group was divided into two subgroups depending on the presence of follicular cysts (AC and WC) or their absence (AO and WO). There was no difference between the number of CL in group A and group W. Presence of corpora albicantia determined percentage of gilts possessing follicular cysts (13.9% group A vs. 66.7% group W). Gilts without follicular cysts (AO plus WO; n = 36) had higher number of CL (P < 0.01) than gilts bearing cysts (AC plus WC; n = 15). Comparison AO-AC did not show significant difference (P = 0.075) between CL number in mature cyst-free and cysts bearing gilts. A prepubertal gilts not bearing follicular cysts (WO) had higher (P < 0.02) number of CL than gilts bearing cysts. A significant negative correlation between the number of CL and number of follicular cysts was found (r = -0.664; P = 0.007). There were no differences in blood plasma progesterone and estradiol concentration between cyst-free and cyst-bearing gilts. These results indicate: (1) a higher follicular cysts appearance in prepubertal than mature gilts challenged with altrenogest and exposed to exogenous gonadotropins and (2) a negative effect of follicular cysts on the number of CL (ovulations) in prepubertal gilts.


Assuntos
Cisto Folicular/induzido quimicamente , Gonadotropinas/farmacologia , Folículo Ovariano/efeitos dos fármacos , Progestinas/farmacologia , Suínos/fisiologia , Acetato de Trembolona/análogos & derivados , Animais , Gonadotropina Coriônica/farmacologia , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/patologia , Estradiol/sangue , Sincronização do Estro , Feminino , Cisto Folicular/patologia , Progesterona/sangue , Acetato de Trembolona/farmacologia
11.
J Chem Phys ; 145(12): 124318, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27782644

RESUMO

We present the first measurement of a bound-state spectrum of the NO-He complex. The recorded spectrum is associated with the first overtone transition of the NO moiety. The IR absorption is detected by exciting the vibrationally excited complex to the Ã-state dissociation continuum. The resulting NO(A) fragment is subsequently ionized in the same laser pulse. We recorded two bands centered around the NO monomer rotational lines, Q11(0.5) and R11(0.5), consistent with an almost free rotation of the NO fragment within the complex. The origin of the spectrum is found at 3724.06 cm-1 blue shifted by 0.21 cm-1 from the corresponding NO monomer origin. The rotational structures of the spectrum are found to be in very good agreement with calculated spectra based on bound states derived from a set of high level ab initio potential energy surfaces [Klos et al. J. Chem. Phys. 112, 2195 (2000)].

12.
Soft Matter ; 12(44): 9007-9013, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27775136

RESUMO

We study the conformational properties of dendrimers with flexible spacers in solutions over a wide range of concentrations from dilute solutions to melts. By combining large scale computer simulations using the bond fluctuation model with scaling arguments we identify the semi-dilute regime of dendrimers which is controlled by the concentration behavior of the linear spacers. Associated with this observation we find that the decrease in the size of flexible dendrimers is accompanied by increasing interpenetration between the molecules with increasing concentration of the solution. In the melt state we show that the size of individual dendrimers follows the scaling prediction for isolated dendrimers at the θ-point rather than that of collapsed dendrimers. The pair correlation functions between the centers of dendrimers indicate that for short spacers dendrimer solutions retain the morphological characteristics of simple liquids. For long spacers the functions reveal high penetration of neighboring dendrimers in the melt state. Our studies show that flexible dendrimers in solution can be understood with arguments similar to those of linear polymers. The role of generation is to influence the particular form of the crossover-function.

13.
J Chem Phys ; 144(11): 114307, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004876

RESUMO

We present new measurements of the near IR spectrum of NO-Ne in the region of the first NO overtone transition. The IR absorption is detected by exciting the vibrationally excited complex to the Ã-state dissociation continuum. The resulting NO(A) fragment is subsequently ionized in the same laser pulse. Spectra of the two lowest bands, A and B, are recorded. The spectra are compared with calculated spectra based on bound states derived from a new set of high level ab initio potential energy surfaces (PESs). For the calculation, the PESs are used with either fixed NO intermolecular distance or averaged for the vibrational states of NO (X̃, v = 0 or 2). Spectra based on the new PESs reproduce the experimental spectra better than theoretical spectra based on the older PESs of M. H. Alexander et al. [J. Chem. Phys. 114, 5588 (2001)]. Especially, spectra based on the two different vibrationally averaged PESs show a marked improvement in comparison to the one based on the fixed internuclear NO-distance. A fitted set of spectroscopic constants allows to reproduce most of the finer details of the measured spectra. Monitoring simultaneously the NO fragment ion and the parent ion channels while scanning the UV wavelength through the NO A-X hot-band region enabled us to confirm the NO-Ne Ã-state dissociation limit of 44233 ± 5 cm(-1). These measurements also confirm the absence of a structured NO-Ne spectrum involving the Ã-state.

14.
Lab Chip ; 16(5): 820-8, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26862603

RESUMO

In a miniaturised flow switch fluid flows are controlled by reducing the local viscosity via absorption of laser radiation. Through this, the local flow rates are increased to switch the outlet port of a fluid flow carrying the analyte. The microfluidic chip is fabricated using Selective Laser-Induced Etching (SLE). SLE allows novel 3D-hydrodynamic focusing, realising circular shaped channel cross-sections and adapting interaction volume geometries to the profile of the laser radiation for optimised absorption. The performance of the switch is validated experimentally with a dyed analyte and video image processing. The ability to sort particles like cells is demonstrated at 8 Hz using polystyrene beads having a diameter of 8 µm.

15.
Sci Rep ; 5: 10367, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26012863

RESUMO

In the emerging field of magnon-spintronics, spin waves are exploited to encode, carry and process information in materials with periodic modulation of their magnetic properties, named magnonic crystals. These enable the redesign of the spin wave dispersion, thanks to its dependence on the geometric and magnetic parameters, resulting in the appearance of allowed and forbidden band gaps for specific propagation directions. In this work, we analyze the spin waves band structure of two-dimensional magnonic crystals consisting of permalloy square antidot lattices with different geometrical parameters. We show that the frequency of the most intense spin-wave modes, measured by Brillouin light scattering, exhibits a universal dependence on the aspect ratio (thickness over width) of the effective nanowire enclosed between adjacent rows of holes. A similar dependence also applies to both the frequency position and the width of the main band gap of the fundamental (dispersive) mode at the edge of the first Brillouin zone. These experimental findings are successfully explained by calculations based on the plane-wave method. Therefore, a unified vision of the spin-waves characteristics in two-dimensional antidot lattices is provided, paving the way to the design of tailored nanoscale devices, such as tunable magnonic filters and phase-shifters, with predicted functionalities.

16.
Scand J Immunol ; 82(1): 76-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25882211

RESUMO

The syndrome of periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA) is an autoinflammatory disorder of unknown aetiology. Tonsillectomy may cause a prompt resolution of the syndrome. The aim was to study the histologic and immunological aspects of the palatine tonsils in PFAPA, to help understand the pathophysiology of the syndrome. Tonsils from children with PFAPA (n = 11) and children with tonsillar hypertrophy (n = 16) were evaluated histologically after haematoxylin and eosin staining. The number of different cell types was identified immunohistochemically by cluster of differentiation (CD) markers: CD3 (T cells), CD4 (T helper cells), CD8 (cytotoxic T cells), CD15 (neutrophils), CD20 (B cells), CD45 (all leucocytes), CD57 (NK cells) and CD163 (monocytes and macrophages). Tonsils from children with PFAPA showed reactive lymphoid hyperplasia dominated by well-developed germinal centres with many tingible body macrophages. The histologic findings were unspecific, and a similar morphologic appearance was also found in the tonsils from controls. The number of CD8+ cells in germinal centres differed between children with PFAPA [median 9 cells (quartiles: 5, 15)] and controls [18 cells (12, 33) (P = 0.001)] and between children with PFAPA with (median 14 cells; 9, 16) and without (4 cells; 3, 8) aphthous stomatitis (P = 0.015). For the other cell types, no differences in germinal centres were found between children with PFAPA and controls. In conclusion, a lower number of CD8+ cells were found in germinal centres of tonsils in children with PFAPA compared to controls, which may be a feature linked to the aetiology of the syndrome.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Febre/imunologia , Centro Germinativo/imunologia , Doenças Hereditárias Autoinflamatórias/imunologia , Linfadenite/imunologia , Tonsila Palatina/imunologia , Faringite/imunologia , Estomatite Aftosa/imunologia , Linfócitos T CD4-Positivos/imunologia , Criança , Pré-Escolar , Feminino , Centro Germinativo/citologia , Humanos , Células Matadoras Naturais/imunologia , Contagem de Linfócitos , Macrófagos/imunologia , Masculino , Monócitos/imunologia , Neutrófilos/imunologia , Tonsila Palatina/cirurgia , Síndrome , Tonsilectomia
17.
J Chem Phys ; 142(14): 144307, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25877578

RESUMO

We present a new trajectory surface hopping study of the rotational energy transfer and collisional quenching of electronically excited OH(A) radicals by Kr. The trajectory surface hopping calculations include both electronic coupling between the excited 2(2)A' and ground 1(2)A' electronic states, as well as Renner-Teller and Coriolis roto-electronic couplings between the 1(2)A' and 1(2)A″, and the 2(2)A' and 1(2)A″ electronic states, respectively. The new calculations are shown to lead to a noticeable improvement in the agreement between theory and experiment in this system, particularly with respect to the OH(X) rotational and Λ-doublet quantum state populations, compared with a simpler two-state treatment, which only included the electronic coupling between the 2(2)A' and 1(2)A' states. Discrepancies between the predictions of theory and experiment do however remain, and could arise either due to errors in the potential energy surfaces and couplings employed, or due to the limitations in the classical treatment of non-adiabatic effects.

18.
J Phys Chem A ; 119(50): 11951-62, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25822338

RESUMO

Accurate quantum reactive scattering time-dependent wave packet close-coupling calculations have been carried out to determine total reaction probabilities and integral cross sections for the O(+) + H2 → OH(+) + H reaction in a range of collision energies from 10(-3) eV up to 1.0 eV for the H2 rovibrational states (v = 0; j = 0, 1, 2) and (v = 1; j = 0) using the potential energy surface (PES) by Martínez et al. As expected for a barrierless reaction, the reaction cross section decays rapidly with collision energy, Ec, following a behavior that nearly corresponds to that predicted by the Langevin model. Rotational excitation of H2 into j = 1, 2 has a very moderate effect on reactivity, similarly to what happens with vibrational excitation below Ec ≈ 0.3 eV. However, at higher collision energies the cross section increases notably when H2 is promoted to v = 1. This effect is explained by resorting to the effective potentials in the entrance channel. The integral cross sections have been used to calculate rate constants in the temperature range 200-1000 K. A good overall agreement has been found with the available experimental data on integral cross sections and rate constants. In addition, time-independent quantum mechanical and quasi-classical trajectory (QCT) calculations have been performed on the same PES aimed to compare the various methodologies and to discern the detailed mechanism of the title reaction. In particular, the analysis of individual trajectories has made it possible to explain, in terms of the coupling between reagent relative velocity and the topography of the PES, the presence of a series of alternating maxima and minima in the collision energy dependence of the QCT reaction probabilities for the reactions with H2(v=0,1,j=0), which are absent in the quantum mechanical calculations.

19.
J Chem Phys ; 141(16): 164306, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362298

RESUMO

Fully quantum state selected and resolved inelastic scattering of NO(X) by krypton has been investigated. Initial Λ-doublet state selection is achieved using an inhomogeneous hexapole electric field. Differential cross sections and even-moment polarization dependent differential cross sections have been obtained at a collision energy of 514 cm(-1) for both spin-orbit and parity conserving and changing collisions. Experimental results are compared with those obtained from quantum scattering calculations and are shown to be in very good agreement. Hard shell quantum scattering calculations are also performed to determine the effects of the different parts of the potential on the scattering dynamics. Comparisons are also made with the NO(X) + Ar system.

20.
J Chem Phys ; 140(5): 054306, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24511939

RESUMO

Quantum beat spectroscopy has been used to measure rate coefficients at 300 K for collisional depolarization for NO(A (2)Σ(+)) and OH(A (2)Σ(+)) with krypton. Elastic depolarization rate coefficients have also been determined for OH(A) + Kr, and shown to make a much more significant contribution to the total depolarization rate than for NO(A) + Kr. While the experimental data for NO(A) + Kr are in excellent agreement with single surface quasiclassical trajectory (QCT) calculations carried out on the upper 2A(') potential energy surface, the equivalent QCT and quantum mechanical calculations cannot account for the experimental results for OH(A) + Kr collisions, particularly at low N. This disagreement is due to the presence of competing electronic quenching at low N, which requires a multi-surface, non-adiabatic treatment. Somewhat improved agreement with experiment is obtained by means of trajectory surface hopping calculations that include non-adiabatic coupling between the ground 1A(') and excited 2A(') states of OH(X/A) + Kr, although the theoretical depolarization cross sections still significantly overestimate those obtained experimentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...