Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (155)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-32009641

RESUMO

The ability to isolate adult cardiac myocytes has permitted researchers to study a variety of cardiac pathologies at the single cell level. While advances in calcium sensitive dyes have permitted the robust optical recording of single cell calcium dynamics, recording of robust transmembrane optical voltage signals has remained difficult. Arguably, this is because of the low single to noise ratio, phototoxicity, and photobleaching of traditional potentiometric dyes. Therefore, single cell voltage measurements have long been confined to the patch clamp technique which while the gold standard, is technically demanding and low throughput. However, with the development of novel potentiometric dyes, large, fast optical responses to changes in voltage can be obtained with little to no phototoxicity and photobleaching. This protocol describes in detail how to isolate adult murine myocytes which can be used for cellular shortening, calcium, and optical voltage measurements. Specifically, the protocol describes how to use a ratiometric calcium dye, a single-excitation calcium dye, and a single excitation voltage dye. This approach can be used to assess the cardiotoxicity and arrhythmogenicity of various chemical agents. While phototoxicity is still an issue at the single cell level, methodology is discussed on how to reduce it.


Assuntos
Separação Celular/métodos , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Imagem Óptica , 4-Aminopiridina/farmacologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Eletricidade , Corantes Fluorescentes/química , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Pressão , Ratos Sprague-Dawley , Sarcômeros/metabolismo
2.
Circ Arrhythm Electrophysiol ; 9(4): e003638, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27069088

RESUMO

BACKGROUND: Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. METHODS AND RESULTS: Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of ß1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. CONCLUSIONS: Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Matriz Extracelular/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação/fisiologia , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Transdução de Sinais
3.
Heart Rhythm ; 10(7): 1044-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23499624

RESUMO

BACKGROUND: Persistent atrial fibrillation (PAF) results in electromechanical and structural remodeling by mechanisms that are poorly understood. Myofibroblast proliferation and fibrosis are major sources of structural remodeling in PAF. Myofibroblasts also interact with atrial myocytes via direct physical contact and release of signaling molecules, which may contribute to remodeling. OBJECTIVE: To determine whether myofibroblasts contribute to atrial myocyte electromechanical remodeling via direct physical contact and platelet-derived growth factor (PDGF) signaling. METHODS: Myofibroblasts and myocytes from adult sheep atria were co-cultured for 24 hours. Alternatively adult sheep atrial myocytes were exposed to 1 ng/mL recombitant PDGF AB peptide for 24 hours. RESULTS: Myocytes making contact with myofibroblasts demonstrated significant reduction (P ≤ .05) in peak L-type calcium current density, shortening of action potential duration (APD), and reduction in calcium transients. These effects were blocked by pretreatment with a PDGF-AB neutralizing anti-body. Heterocellular contact also severely disturbed the localization of the L-type calcium channel. Myocytes exposed to recombinant PDGF-AB peptide for 24 hours demonstrated reduced APD50, APD80 and Peak L-type calcium current. Pretreatment with a PDGF-AB neutralizing antibody prevented these effects. Finally, while control atrial myocytes did not respond in a 1:1 manner to pacing frequencies of 3 Hz or higher, atrial myocytes from hearts that were tachypaced for 2 months and normal myocytes treated with PDGF-AB for 24 hours could be paced up to 10 Hz. CONCLUSIONS: In addition to leading to fibrosis, atrial myofibroblasts contribute to electromechanical remodeling of myocytes via direct physical contact and release of PDGF-AB, which may be a factor in PAF-induced remodeling.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Átrios do Coração/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Potenciais de Ação/efeitos dos fármacos , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ovinos , Transdução de Sinais/efeitos dos fármacos
4.
Circ Res ; 110(12): 1556-63, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22570367

RESUMO

RATIONALE: Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer a powerful in vitro tool to investigate disease mechanisms and to perform patient-specific drug screening. To date, electrophysiological analysis of iPSC-CMs has been limited to single-cell recordings or low-resolution microelectrode array mapping of small cardiomyocyte aggregates. New methods of generating and optically mapping impulse propagation of large human iPSC-CM cardiac monolayers are needed. OBJECTIVE: Our first aim was to develop an imaging platform with versatility for multiparameter electrophysiological mapping of cardiac preparations, including human iPSC-CM monolayers. Our second aim was to create large electrically coupled human iPSC-CM monolayers for simultaneous action potential and calcium wave propagation measurements. METHODS AND RESULTS: A fluorescence imaging platform based on electronically controlled light-emitting diode illumination, a multiband emission filter, and single camera sensor was developed and utilized to monitor simultaneously action potential and intracellular calcium wave propagation in cardiac preparations. Multiple, large-diameter (≥1 cm), electrically coupled human cardiac monolayers were then generated that propagated action potentials and calcium waves at velocities similar to those commonly observed in rodent cardiac monolayers. CONCLUSIONS: The multiparametric imaging system presented here offers a scalable enabling technology to measure simultaneously action potential and intracellular calcium wave amplitude and dynamics of cardiac monolayers. The advent of large-scale production of human iPSC-CMs makes it possible to now generate sufficient numbers of uniform cardiac monolayers that can be utilized for the study of arrhythmia mechanisms and offers advantages over commonly used rodent models.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Engenharia Genética/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Separação Celular/métodos , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...