Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 146(20): 203326, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571390

RESUMO

Alkylsilane self-assembled monolayers (SAMs) are often used as model substrates for their ease of preparation and hydrophobic properties. We have observed that these atomically smooth monolayers also provide a slip boundary condition for dewetting films composed of unentangled polymers. This slip length, an indirect measure of the friction between a given liquid and different solids, is switchable and can be increased [R. Fetzer et al., Phys. Rev. Lett. 95, 127801 (2005); O. Bäumchen et al., J. Phys.: Condens. Matter 24, 325102 (2012)] if the alkyl chain length is changed from 18 to 12 backbone carbons, for example. Typically, this change in boundary condition is affected in a quantized way, using one or the other alkyl chain length, thus obtaining one or the other slip length. Here, we present results in which this SAM structure is changed in a continuous way. We prepare bidisperse mixed SAMs of alkyl silanes, with the composition as a control parameter. We find that all the mixed SAMs investigated show an enhanced slip boundary condition as compared to the single-component SAMs. The slip boundary condition is accessed using optical and atomic force microscopy, and we describe these observations in the context of X-ray reflectivity measurements. The slip length, varying over nearly two orders of magnitude, of identical polymer melts on chemically similar SAMs is found to correlate with the density of exposed alkyl chains. Our results demonstrate the importance of a well characterized solid/liquid pair, down to the angstrom level, when discussing the friction between a liquid and a solid.

2.
Langmuir ; 31(9): 2630-8, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25668124

RESUMO

Self-assembled monolayers (SAM) of dodecyltrichlorosilane (DTS) and octadecyltrichlorosilane (OTS) on silica are studied by molecular dynamics simulations at 298 K and 1 bar. The coverage (number of alkylsilane molecules per surface area) is systematically varied. The results yield insight into the properties of the alkylsilane SAMs, which complement experimental studies from the literature. Relationships are reported between thickness, tilt angle, and coverage of alkylsilane SAMs, which also hold for alkylsilanes other than DTS and OTS. They are interpreted based on the information on molecular ordering in the SAMs taken form the simulation data. System size and simulation time are much larger than in most former simulation works on the topic. This reduces the influence of the initial configuration as well as the periodic boundary conditions and hence minimizes the risk of artificial ordering. At the same time, more reliable statistics for the calculated properties can be provided. The evaluation of experimental data in the field is often based on strongly simplified models. The present simulation results suggest that some of these lead to errors, concerning the interpretation of experimental results, which could be avoided by introducing more realistic models.

3.
Adv Colloid Interface Sci ; 210: 13-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24780402

RESUMO

If a thin liquid film is not stable, different rupture mechanisms can be observed causing characteristic film morphologies: spinodal dewetting and dewetting by nucleation of holes. This rupturing entails liquid flow and opens new possibilities to study microscopic phenomena. Here we use this process of dewetting to gain insight on the slip boundary condition at the solid-liquid interface. Having established hydrodynamic models that allow for the determination of the slip length in a dewetting experiment based on nucleation, we move on to the quantification and molecular description of slip effects in various systems. For the late stage of the dewetting process involving the Rayleigh-Plateau instability, several distinct droplet patterns can be observed. We describe the importance of slip in determining what pattern may be found. In order to control the slip length, we use polymeric liquids on different hydrophobic coatings of silicon wafers. We find that subtle changes in the coating can lead to large changes in the slip length. Thus, we gain insight into the question of how the structure of the substrate affects the slip length.

4.
J Phys Condens Matter ; 24(32): 325102, 1-17, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22647885

RESUMO

Thin liquid films on surfaces are part of our everyday life; they serve, e.g., as coatings or lubricants. The stability of a thin layer is governed by interfacial forces, described by the effective interface potential, and has been subject of many studies in recent decades. In recent years, the dynamics of thin liquid films has come into focus since results on the reduction of the glass transition temperature raised new questions on the behavior of especially polymeric liquids in confined geometries. The new focus was fired by theoretical models that proposed significant implication of the boundary condition at the solid/liquid interface on the dynamics of dewetting and the form of a liquid front. Our study reflects these recent developments and adds new experimental data to corroborate the theoretical models. To probe the solid/liquid boundary condition experimentally, different methods are possible, each bearing advantages and disadvantages, which will be discussed. Studying liquid flow on a variety of different substrates entails a view on the direct implications of the substrate. The experimental focus of this study is the variation of the polymer chain length; the results demonstrate that inter-chain entanglements and in particular their density close to the interface, originating from non-bulk conformations, govern the liquid slip of a polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...