Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 454: 40-50, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881260

RESUMO

The consequences of excessive fructose intake extend beyond those of metabolic disorder to changes in emotional regulation and cognitive function. Long-term consumption of fructose, particularly common when begun in adolescence, is more likely to lead to deleterious consequences than acute consumption. These long-term consequences manifest differently in males and females, suggesting a sex-divergent mechanism by which fructose can impair physiology and neural function. The purpose of the current project was to investigate a possible sex-specific mechanism by which elevated fructose consumption drives behavioral deficits and accompanying metabolic symptoms - specifically, synaptic mitochondrial function. Male and female rats were fed a high fructose diet beginning at weaning and maintained into adulthood. Measures of physiological health across the diet consumption period indicated that females were more likely to gain weight than males while both displayed increased circulating blood glucose. As adults, females fed the high fructose diet displayed increased floating behavior in the forced swim task while males exhibited increased exploratory behavior in the open field. Synaptic respiration was altered by diet in both females and males but the effect was sex-divergent - fructose-fed females had increased synaptic respiration while males showed a decrease. When exposed to an acute energetic challenge, the pattern was reversed. Taken together, these data indicate that diet-induced alterations to neural function and physiology are sex-specific and highlight the need to consider sex as a biological variable when treating metabolic disease. Furthermore, these data suggest that synaptic mitochondrial function may contribute directly to the behavioral consequences of elevated fructose consumption.


Assuntos
Dieta , Frutose , Animais , Peso Corporal , Feminino , Masculino , Ratos , Respiração , Desmame
2.
Am J Physiol Regul Integr Comp Physiol ; 317(6): R903-R911, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553663

RESUMO

Sex differences are evident in the presentation of metabolic symptoms. A shift of sex hormones that signal the onset of puberty combined with a poor diet consumed in adolescence is likely to have sex-specific, long-term impacts on adult physiology. Here, we expanded on existing literature to elucidate the sex-specific mechanisms driving physiological deficits following high fructose consumption. Male and female Wistar rats were fed a high-fructose (55%) diet beginning immediately postweaning for 10 wk. Female rats fed the high-fructose diet displayed elevated weight gain and extensive liver pathology consistent with markers of nonalcoholic fatty liver disease (NAFLD). Male rats fed the high-fructose diet exhibited increased circulating glucose along with moderate hepatic steatosis. Levels of cytokines and gene expression of inflammatory targets were not altered by fructose consumption in either sex. However, circulating levels of markers for liver health, including alanine transaminase and uric acid, and markers for epithelial cell death were altered by fructose consumption. From the alterations in these markers for liver health, along with elevated circulating triglycerides, it was evident that liver health had deteriorated significantly and that a number of factors were at play. Both adult fructose-fed male and female rats displayed motor deficits that correlated with aberrant structural changes at the neuromuscular junction; however, these deficits were exacerbated in males. These data indicate that consumption of a high-fructose diet beginning in adolescence leads to adult pathology that is modified by sex. Identification of these sex-specific changes has implications for treatment of clinical presentation of metabolic syndrome and related disorders.


Assuntos
Frutose/administração & dosagem , Fígado/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ração Animal/análise , Animais , Glicemia , Doença Hepática Induzida por Substâncias e Drogas , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinária , Ciclo Estral/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Gravidez , Ratos , Caracteres Sexuais
3.
Front Neuroendocrinol ; 54: 100770, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31288042

RESUMO

The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.


Assuntos
Alostase/fisiologia , Hormônios/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Mitocôndrias/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...