Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(13): 3698-3704, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38546143

RESUMO

MXenes are versatile 2D materials demonstrating outstanding electrochemical and physical properties, but their practical use is limited, because of fast degradation in an aqueous environment. To prevent the degradation of MXenes, it is essential to understand the atomistic details of the reaction and to identify active sites. In this letter, we provided a computational analysis of the degradation processes at the interface between MXene basal planes and water using enhanced sampling ab initio molecular dynamics simulations and symbolic regression analysis. Our results indicate that the reactivity of Ti sites toward the water attack reaction depends on both local coordination and chemical composition of the MXene surfaces. Decreasing the work function of the Ti3C2Tx surfaces and avoiding Ti sites that are loosely anchored to the subsurface (e.g., O-coordinated) can improve surface stability. The developed computational framework can be further used to investigate other possible culprits of the degradation reaction, including the role of defects and edges.

2.
Nat Nanotechnol ; 16(9): 981-988, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34326528

RESUMO

Voltage control of magnetic order is desirable for spintronic device applications, but 180° magnetization switching is not straightforward because electric fields do not break time-reversal symmetry. Ferrimagnets are promising candidates for 180° switching owing to a multi-sublattice configuration with opposing magnetic moments of different magnitudes. In this study we used solid-state hydrogen gating to control the ferrimagnetic order in rare earth-transition metal thin films dynamically. Electric field-induced hydrogen loading/unloading in GdCo can shift the magnetic compensation temperature by more than 100 K, which enables control of the dominant magnetic sublattice. X-ray magnetic circular dichroism measurements and ab initio calculations indicate that the magnetization control originates from the weakening of antiferromagnetic exchange coupling that reduces the magnetization of Gd more than that of Co upon hydrogenation. We observed reversible, gate voltage-induced net magnetization switching and full 180° Néel vector reversal in the absence of external magnetic fields. Furthermore, we generated ferrimagnetic spin textures, such as chiral domain walls and skyrmions, in racetrack devices through hydrogen gating. With gating times as short as 50 µs and endurance of more than 10,000 cycles, our method provides a powerful means to tune ferrimagnetic spin textures and dynamics, with broad applicability in the rapidly emerging field of ferrimagnetic spintronics.

3.
Nat Commun ; 12(1): 4298, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262033

RESUMO

Single-phase multiferroic materials that allow the coexistence of ferroelectric and magnetic ordering above room temperature are highly desirable, motivating an ongoing search for mechanisms for unconventional ferroelectricity in magnetic oxides. Here, we report an antisite defect mechanism for room temperature ferroelectricity in epitaxial thin films of yttrium orthoferrite, YFeO3, a perovskite-structured canted antiferromagnet. A combination of piezoresponse force microscopy, atomically resolved elemental mapping with aberration corrected scanning transmission electron microscopy and density functional theory calculations reveals that the presence of YFe antisite defects facilitates a non-centrosymmetric distortion promoting ferroelectricity. This mechanism is predicted to work analogously for other rare earth orthoferrites, with a dependence of the polarization on the radius of the rare earth cation. Our work uncovers the distinctive role of antisite defects in providing a mechanism for ferroelectricity in a range of magnetic orthoferrites and further augments the functionality of this family of complex oxides for multiferroic applications.

4.
Nat Commun ; 11(1): 3134, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561717

RESUMO

Physical neural networks made of analog resistive switching processors are promising platforms for analog computing. State-of-the-art resistive switches rely on either conductive filament formation or phase change. These processes suffer from poor reproducibility or high energy consumption, respectively. Herein, we demonstrate the behavior of an alternative synapse design that relies on a deterministic charge-controlled mechanism, modulated electrochemically in solid-state. The device operates by shuffling the smallest cation, the proton, in a three-terminal configuration. It has a channel of active material, WO3. A solid proton reservoir layer, PdHx, also serves as the gate terminal. A proton conducting solid electrolyte separates the channel and the reservoir. By protonation/deprotonation, we modulate the electronic conductivity of the channel over seven orders of magnitude, obtaining a continuum of resistance states. Proton intercalation increases the electronic conductivity of WO3 by increasing both the carrier density and mobility. This switching mechanism offers low energy dissipation, good reversibility, and high symmetry in programming.

5.
Proteins ; 88(9): 1162-1168, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32105362

RESUMO

Immune checkpoint blockade of signaling pathways such as PD-1/PD-L1 has recently opened up a new avenue for highly efficient immunotherapeutic strategies to treat cancer. Since tumor microenvironments are characterized by lower pH (5.5-7.0), pH-dependent protein-ligand interactions can be exploited as efficient means to regulate drug affinity and specificity for a variety of malignancies. In this article, we investigate the mechanism and kinetics of pH-dependent binding and unbinding processes for the PD-1/PD-L1 checkpoint pair employing classical molecular dynamics simulations. Two representative pH levels corresponding to circumneutral physiological conditions of blood (pH 7.4) and acidic tumor microenvironment (pH 5.5) are considered. Our calculations demonstrate that pH plays a key role in protein-ligand interactions with small pH changes leading to several orders of magnitude increase in binding affinity. By identifying the binding pocket in the PD-1/PD-L1 complex, we show a pivotal role of the His68 protonation state of PD-1in the complex stabilization at low pH. The results on the reaction rate constants are in qualitative agreement with available experimental data. The obtained molecular details are important for further engineering of binding/unbinding kinetics to formulate more efficient immune checkpoint blockade strategies.


Assuntos
Antígeno B7-H1/química , Simulação de Dinâmica Molecular , Receptor de Morte Celular Programada 1/química , Prótons , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Cinética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Termodinâmica
6.
ACS Appl Mater Interfaces ; 11(22): 20110-20116, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31081328

RESUMO

Irreversible dissolution of transition metals (TMs) from cathode materials in lithium-ion batteries (LIBs) represents a serious challenge for the application of high-energy-density LIBs. Despite substantial improvements achieved by Ni doping of the LiMn2O4 spinel, the promising high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode material still suffers from the loss of electro-active materials (Mn and Ni). This process contributes to the formation of solid-electrolyte interfaces and capacity loss severely limiting the battery life cycle. Here, we combine static and ab initio molecular dynamics free energy calculations based on the density functional theory to investigate the mechanism and kinetics of TM dissolution from LNMO into the liquid organic electrolyte. Our calculations help deconvolute the impact of various factors on TM dissolution rates such as the presence of surface protons and oxygen vacancies and the nature of TMs and electrolyte species. The present study also reveals a linear relationship between adsorption strength of the electrolyte species and TM dissolution barriers that should help design electrode/electrolyte interfaces less vulnerable to TM dissolution.

7.
J Phys Chem B ; 123(18): 3976-3983, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30995047

RESUMO

Compared to the studies of new electrolyte and electrode chemistries aimed to push the energy and power density of battery systems, investigations of self-discharge reactions contributing to capacity fading are still very limited, especially at the molecular level. Herein, we present a computational study of oxidation-reduction reactions between vanadium ions in solution leading to battery self-discharge due to the crossover of vanadium species through the membrane in all-vanadium redox flow batteries (RFB). By utilizing Car-Parrinello molecular dynamics (CPMD) based metadynamics simulations in combination with the Marcus electron transfer theory, we examine the energetics of condensation reactions between aqueous vanadium ions to form dimers and their subsequent dissociation into vanadium species of different oxidation states after electron transfer has occurred. Our results suggest that multiple self-discharge reaction pathways could be possible under the vanadium RFB operation conditions. The study underscores the complexity of vanadium polymerization reactions in aqueous solutions with coupled electron and proton transfer processes that can lead to the formation of various mixed-valence vanadium polymeric structures.

8.
Phys Rev Lett ; 121(5): 056601, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118295

RESUMO

Recent experimental results have demonstrated ferroelectricity in thin films of SrTiO_{3} induced by antisite Ti_{Sr} defects. This opens a possibility to use SrTiO_{3} as a barrier layer in ferroelectric tunnel junctions (FTJs)-emerging electronic devices promising for applications in nanoelectronics. Here using density functional theory combined with quantum-transport calculations applied to a prototypical Pt/SrTiO_{3}/Pt FTJ, we demonstrate that the localized in-gap energy states produced by the antisite Ti_{Sr} defects are responsible for the enhanced electron tunneling conductance which can be controlled by ferroelectric polarization. Our tight-binding modeling, which takes into account multiple defects, shows that the predicted defect-assisted tunneling electroresistance effect is greatly amplified when the defect energy levels are brought to the Fermi energy by one of the polarization states. Our results have implications for FTJs based on conventional ferroelectric barriers with defects and can be employed for the design of new types of FTJs with enhanced performance.

9.
ACS Appl Mater Interfaces ; 10(24): 20621-20626, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29808985

RESUMO

Redox flow batteries (RFBs) are promising electrochemical energy storage systems, for which development is impeded by a poor understanding of redox reactions occurring at electrode/electrolyte interfaces. Even for the conventional all-vanadium RFB chemistry employing V2+/V3+ and VO2+/VO2+ couples, there is still no consensus about the reaction mechanism, electrode active sites, and rate-determining step. Herein, we perform Car-Parrinello molecular dynamics-based metadynamics simulations to unravel the mechanism of the VO2+/VO2+ redox reaction in water at the oxygen-functionalized graphite (112̅0) edge surface serving as a representative carbon-based electrode. Our results suggest that during the battery discharge aqueous VO2+/VO2+ species adsorb at the surface C-O groups as inner-sphere complexes, exhibiting faster adsorption/desorption kinetics than V2+/V3+, at least at low vanadium concentrations considered in our study. We find that this is because (i) VO2+/VO2+ conversion does not involve the slow transfer of an oxygen atom, (ii) protonation of VO2+ is spontaneous and coupled to interfacial electron transfer in acidic conditions to enable VO2+ formation, and (iii) V3+ found to be strongly bound to oxygen groups of the graphite surface features unfavorable desorption kinetics. In contrast, the reverse process taking place upon charging is expected to be more sluggish for the VO2+/VO2+ redox couple because of both unfavorable deprotonation of the VO2+ water ligands and adsorption/desorption kinetics.

10.
Nano Lett ; 18(1): 491-497, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29236501

RESUMO

Strontium titanate (SrTiO3) is the "silicon" in the emerging field of oxide electronics. While bulk properties of this material have been studied for decades, new unexpected phenomena have recently been discovered at the nanoscale, when SrTiO3 forms an ultrathin film or an atomically sharp interface with other materials. One of the striking discoveries is room-temperature ferroelectricity in strain-free ultrathin films of SrTiO3 driven by the TiSr antisite defects, which generate a local dipole moment polarizing the surrounding nanoregion. Here, we demonstrate that these polar defects are not only responsible for ferroelectricity, but also propel the appearance of highly conductive channels, "hot spots", in the ultrathin SrTiO3 films. Using a combination of scanning probe microscopy experimental studies and theoretical modeling, we show that the hot spots emerge due to resonant tunneling through localized electronic states created by the polar defects and that the tunneling conductance of the hot spots is controlled by ferroelectric polarization. Our finding of the polarization-controlled defect-assisted tunneling reveals a new mechanism of resistive switching in oxide heterostructures and may have technological implications for ferroelectric tunnel junctions. It is also shown that the conductivity of the hot spots can be modulated by mechanical stress, opening a possibility for development of conceptually new electronic devices with mechanically tunable resistive states.

11.
Phys Chem Chem Phys ; 19(23): 14897-14901, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28555224

RESUMO

Vanadium redox flow batteries (VRFBs) represent a promising solution to grid-scale energy storage, and understanding the reactivity of electrode materials is crucial for improving the power density of VRFBs. However, atomistic details about the interactions between vanadium ions and electrode surfaces in aqueous electrolytes are still lacking. Here, we examine the reactivity of the basal (0001) and edge (112[combining macron]0) graphite facets with water and aqueous V2+/V3+ redox species at 300 K employing Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics simulations. The results suggest that the edge surface is characterized by the formation of ketonic C[double bond, length as m-dash]O functional groups due to complete water dissociation into the H/O/H configuration with surface O atoms serving as active sites for adsorption of V2+/V3+ species. The formation of V-O bonds at the surface should significantly improve the kinetics of electron transfer at the edge sites, which is not the case for the basal surface, in agreement with the experimentally hypothesized mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...