Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7650, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538096

RESUMO

Semi-continuum modelling of unsaturated porous media flow is based on representing the porous medium as a grid of non-infinitesimal blocks that retain the character of a porous medium. This approach is similar to the hybrid/multiscale modelling. Semi-continuum model is able to physically correctly describe diffusion-like flow, finger-like flow, and the transition between them. This article presents the limit of the semi-continuum model as the block size goes to zero. In the limiting process, the retention curve of each block scales with the block size and in the limit becomes a hysteresis operator of the Prandtl-type used in elasto-plasticity models. Mathematical analysis showed that the limit of the semi-continuum model is a hyperbolic-parabolic partial differential equation with a hysteresis operator of Prandl's type. This limit differs from the standard Richards' equation, which is a parabolic equation and is not able to describe finger-like flow.


Assuntos
Modelos Teóricos , Porosidade
2.
Sci Rep ; 11(1): 3223, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547389

RESUMO

Modelling fluid flow in an unsaturated porous medium is a complex problem with many practical applications. There is enough experimental and theoretical evidence that the standard continuum mechanics based modelling approach is unable to capture many important features of porous media flow. In this paper, a two-dimensional semi-continuum model is presented that combines ideas from continuum mechanics with invasion percolation models. The medium is divided into blocks of finite size that retain the nature of a porous medium. Each block is characterized by its porosity, permeability, and a retention curve. The saturation and pressure of the fluids are assumed to be uniform throughout each block. It is demonstrated that the resulting semi-continuum model is able to reproduce (1) gravity induced preferential flow with a spatially rich system of rivulets (fingers) characterized by saturation overshoot, (2) diffusion-like flow with a monotonic saturation profile, (3) the transition between the two. The model helps to explain the formation of the preferential pathways and their persistence and structure (the core and fringe of the fingers), the effect of the initial saturation of the matrix, and the saturation overshoot phenomenon.

3.
Sci Rep ; 9(1): 8390, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182825

RESUMO

A semi-continuum model for fluid flow in saturated-unsaturated porous medium in one spatial dimension is presented. The model is based on well-established physics, measurable parameters and material characteristics. The porous material is characterized by porosity, intrinsic permeability, main wetting and draining branches of the retention curve, and the saturation dependence of the relative permeability. The fluid is characterized by its density and dynamic viscosity. The only physics involved is the mass balance of fluid in porous media together with the Darcy-Buckingham Law for fluid flow in unsaturated porous media. The model is a cellular automaton based on the Macro Modified Invasion Percolation concept of dividing the porous medium into blocks which are not infinitesimal and are assumed to retain the characteristics of a porous medium. The cellular automaton repeats three successive rules: saturation update in each block, pressure update in each block, and flux update between neighboring blocks. The model tracks the evolution of the relative saturation, the fluid capillary pressure, and the fluid flux. The model is shown to reproduce qualitatively and quantitatively all features of one dimensional saturation overshoot behavior reported in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...