Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 114: 104299, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290875

RESUMO

The FDA Bacteriological Analytical Manual (BAM) Salmonella culture method takes at least 3 days for a presumptive positive result. The FDA developed a quantitative PCR (qPCR) method to detect Salmonella from 24-h preenriched cultures, using ABI 7500 PCR system. The qPCR method has been evaluated as a rapid screening method for a broad range of foods by single laboratory validation (SLV) studies. The present multi-laboratory validation (MLV) study was aimed to measure the reproducibility of this qPCR method and compare its performance with the culture method. Sixteen laboratories participated in two rounds of MLV study to analyze twenty-four blind-coded baby spinach test portions each. The first round yielded ∼84% and ∼82% positive rates across laboratories for the qPCR and culture methods, respectively, which were both outside the fractional range (25%-75%) required for fractionally inoculated test portions by the FDA's Microbiological Method Validation Guidelines. The second round yielded ∼68% and ∼67% positive rates. The relative level of detection (RLOD) for the second-round study was 0.969, suggesting that qPCR and culture methods had similar sensitivity (p > 0.05). The study demonstrated that the qPCR yields reproducible results and is sufficiently sensitive and specific for the detection of Salmonella in food.


Assuntos
Microbiologia de Alimentos , Spinacia oleracea , Reação em Cadeia da Polimerase em Tempo Real/métodos , Laboratórios , Reprodutibilidade dos Testes , Salmonella/genética
2.
J Appl Lab Med ; 8(4): 726-741, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37222567

RESUMO

BACKGROUND: Throughout the COVID-19 pandemic, veterinary diagnostic laboratories have tested diagnostic samples for SARS-CoV-2 both in animals and over 6 million human samples. An evaluation of the performance of those laboratories is needed using blinded test samples to ensure that laboratories report reliable data to the public. This interlaboratory comparison exercise (ILC3) builds on 2 prior exercises to assess whether veterinary diagnostic laboratories can detect Delta and Omicron variants spiked in canine nasal matrix or viral transport medium. METHODS: The ILC organizer was an independent laboratory that prepared inactivated Delta variant at levels of 25 to 1000 copies per 50 µL of nasal matrix for blinded analysis. Omicron variant at 1000 copies per 50 µL of transport medium was also included. Feline infectious peritonitis virus (FIPV) RNA was used as a confounder for specificity assessment. Fourteen test samples were prepared for each participant. Participants used their routine diagnostic procedures for RNA extraction and real-time reverse transcriptase-PCR. Results were analyzed according to International Organization for Standardization (ISO) 16140-2:2016. RESULTS: Overall, laboratories demonstrated 93% detection for Delta and 97% for Omicron at 1000 copies per 50 µL. Specificity was 97% for blank samples and 100% for blank samples with FIPV. No differences in Cycle Threshold (Ct) values were significant for samples with the same virus levels between N1 and N2 markers, nor between the 2 variants. CONCLUSIONS: The results indicated that all ILC3 participants were able to detect both Delta and Omicron variants. The canine nasal matrix did not significantly affect SARS-CoV-2 detection.


Assuntos
COVID-19 , SARS-CoV-2 , Gatos , Humanos , Animais , Cães , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/veterinária , Laboratórios , Pandemias , RNA , Teste para COVID-19
3.
J Vet Diagn Invest ; 34(5): 825-834, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35983593

RESUMO

The COVID-19 pandemic presents a continued public health challenge. Veterinary diagnostic laboratories in the United States use RT-rtPCR for animal testing, and many laboratories are certified for testing human samples; hence, ensuring that laboratories have sensitive and specific SARS-CoV2 testing methods is a critical component of the pandemic response. In 2020, the FDA Veterinary Laboratory Investigation and Response Network (Vet-LIRN) led an interlaboratory comparison (ILC1) to help laboratories evaluate their existing RT-rtPCR methods for detecting SARS-CoV2. All participating laboratories were able to detect the viral RNA spiked in buffer and PrimeStore molecular transport medium (MTM). With ILC2, Vet-LIRN extended ILC1 by evaluating analytical sensitivity and specificity of the methods used by participating laboratories to detect 3 SARS-CoV2 variants (B.1; B.1.1.7 [Alpha]; B.1.351 [Beta]) at various copy levels. We analyzed 57 sets of results from 45 laboratories qualitatively and quantitatively according to the principles of ISO 16140-2:2016. More than 95% of analysts detected the SARS-CoV2 RNA in MTM at ≥500 copies for all 3 variants. In addition, for nucleocapsid markers N1 and N2, 81% and 92% of the analysts detected ≤20 copies in the assays, respectively. The analytical specificity of the evaluated methods was >99%. Participating laboratories were able to assess their current method performance, identify possible limitations, and recognize method strengths as part of a continuous learning environment to support the critical need for the reliable diagnosis of COVID-19 in potentially infected animals and humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , COVID-19/veterinária , Teste para COVID-19 , Humanos , Imunidade Inata , Laboratórios , Linfócitos , Pandemias/veterinária , RNA Viral/análise , SARS-CoV-2/genética , Sensibilidade e Especificidade , Estados Unidos/epidemiologia
4.
J Vet Diagn Invest ; 33(6): 1039-1051, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34293974

RESUMO

The continued search for intermediate hosts and potential reservoirs for SARS-CoV2 makes it clear that animal surveillance is critical in outbreak response and prevention. Real-time RT-PCR assays for SARS-CoV2 detection can easily be adapted to different host species. U.S. veterinary diagnostic laboratories have used the CDC assays or other national reference laboratory methods to test animal samples. However, these methods have only been evaluated using internal validation protocols. To help the laboratories evaluate their SARS-CoV2 test methods, an interlaboratory comparison (ILC) was performed in collaboration with multiple organizations. Forty-four sets of 19 blind-coded RNA samples in Tris-EDTA (TE) buffer or PrimeStore transport medium were shipped to 42 laboratories. Results were analyzed according to the principles of the International Organization for Standardization (ISO) 16140-2:2016 standard. Qualitative assessment of PrimeStore samples revealed that, in approximately two-thirds of the laboratories, the limit of detection with a probability of 0.95 (LOD95) for detecting the RNA was ≤20 copies per PCR reaction, close to the theoretical LOD of 3 copies per reaction. This level of sensitivity is not expected in clinical samples because of additional factors, such as sample collection, transport, and extraction of RNA from the clinical matrix. Quantitative assessment of Ct values indicated that reproducibility standard deviations for testing the RNA with assays reported as N1 were slightly lower than those for N2, and they were higher for the RNA in PrimeStore medium than those in TE buffer. Analyst experience and the use of either a singleplex or multiplex PCR also affected the quantitative ILC test results.


Assuntos
COVID-19 , RNA Viral , Animais , COVID-19/veterinária , Laboratórios , RNA Viral/genética , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e Especificidade
5.
J Food Prot ; 79(11): 1911-1918, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28221923

RESUMO

The U.S. Food and Drug Administration (FDA) oversees a long-standing cooperative federal and state milk sanitation program that uses the grade "A" Pasteurized Milk Ordinance standards to maintain the safety of grade "A" milk sold in the United States. The Pasteurized Milk Ordinance requires that grade "A" milk samples be tested using validated total aerobic bacterial and coliform count methods. The objective of this project was to conduct an interlaboratory method validation study to compare performance of a film plate method with an automated most-probable-number method for total aerobic bacterial and coliform counts, using statistical approaches from international data standards. The matrix-specific validation study was administered concurrently with the FDA's annual milk proficiency test to compare method performance in five milk types. Eighteen analysts from nine laboratories analyzed test portions from 12 samples in triplicate. Statistics, including mean bias and matrix standard deviation, were calculated. Sample-specific bias of the alternative method for total aerobic count suggests that there are no large deviations within the population of samples considered. Based on analysis of 648 data points, mean bias of the alternative method across milk samples for total aerobic count was 0.013 log CFU/ml and the confidence interval for mean deviation was -0.066 to 0.009 log CFU/ml. These results indicate that the mean difference between the selected methods is small and not statistically significant. Matrix standard deviation was 0.077 log CFU/ml, showing that there is a low risk for large sample-specific bias based on milk matrix. Mean bias of the alternative method was -0.160 log CFU/ml for coliform count data. The 95% confidence interval was -0.210 to -0.100 log CFU/ml, indicating that mean deviation is significantly different from zero. The standard deviation of the sample-specific bias for coliform data was 0.033 log CFU/ml, indicating no significant effect of milk type.


Assuntos
Microbiologia de Alimentos , Leite/microbiologia , Animais , Bactérias Aeróbias , Contagem de Colônia Microbiana , Humanos , Laboratórios , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...