Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 663855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847048

RESUMO

Purpose: Insulin-like growth factor-1 (IGF-1) stimulates epithelial regeneration but may also induce life-threatening hypoglycemia. In our study, we first assessed its safety. Subsequently, we examined the effect of IGF-1 administered in different dose regimens on gastrointestinal damage induced by high doses of gamma radiation. Material and methods: First, fasting C57BL/6 mice were injected subcutaneously with IGF-1 at a single dose of 0, 0.2, 1, and 2 mg/kg to determine the maximum tolerated dose (MTD). The glycemic effect of MTD (1 mg/kg) was additionally tested in non-fasting animals. Subsequently, a survival experiment was performed. Animals were irradiated (60Co; 14, 14.5, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously at 1 mg/kg 1, 24, and 48 h after irradiation. Simultaneously, mice were irradiated (60Co; 12, 14, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously under the same regimen. Jejunum and lung damage were assessed 84 h after irradiation. Finally, we evaluated the effect of six different IGF-1 dosage regimens administered subcutaneously on gastrointestinal damage and peripheral blood changes in mice 6 days after irradiation (60Co; 12 and 14 Gy; shielded head). The regimens differed in the number of doses (one to five doses) and the onset of administration (starting at 1 [five regimens] or 24 h [one regimen] after irradiation). Results: MTD was established at 1 mg/kg. MTD mitigated lethality induced by 14 Gy and reduced jejunum and lung damage caused by 12 and 14 Gy. However, different dosing regimens showed different efficacy, with three and four doses (administered 1, 24, and 48 h and 1, 24, 48, and 72 h after irradiation, respectively) being the most effective. The three-dose regimens supported intestinal regeneration even if the administration started at 24 h after irradiation, but its potency decreased. Conclusion: IGF-1 seems promising in the mitigation of high-dose irradiation damage. However, the selected dosage regimen affects its efficacy.

2.
PLoS One ; 13(2): e0193412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474504

RESUMO

The increasing risk of acute large-scale radiological/nuclear exposures of population underlines the necessity of developing new, rapid and high throughput biodosimetric tools for estimation of received dose and initial triage. We aimed to compare the induction and persistence of different radiation exposure biomarkers in human peripheral blood in vivo. Blood samples of patients with indicated radiotherapy (RT) undergoing partial body irradiation (PBI) were obtained soon before the first treatment and then after 24 h, 48 h, and 5 weeks; i.e. after 1, 2, and 25 fractionated RT procedures. We collected circulating peripheral blood from ten patients with tumor of endometrium (1.8 Gy per fraction) and eight patients with tumor of head and neck (2.0-2.121 Gy per fraction). Incidence of dicentrics and micronuclei was monitored as well as determination of apoptosis and the transcription level of selected radiation-responsive genes. Since mitochondrial DNA (mtDNA) has been reported to be a potential indicator of radiation damage in vitro, we also assessed mtDNA content and deletions by novel multiplex quantitative PCR. Cytogenetic data confirmed linear dose-dependent increase in dicentrics (p < 0.01) and micronuclei (p < 0.001) in peripheral blood mononuclear cells after PBI. Significant up-regulations of five previously identified transcriptional biomarkers of radiation exposure (PHPT1, CCNG1, CDKN1A, GADD45, and SESN1) were also found (p < 0.01). No statistical change in mtDNA deletion levels was detected; however, our data indicate that the total mtDNA content decreased with increasing number of RT fractions. Interestingly, the number of micronuclei appears to correlate with late radiation toxicity (r2 = 0.9025) in endometrial patients suggesting the possibility of predicting the severity of RT-related toxicity by monitoring this parameter. Overall, these data represent, to our best knowledge, the first study providing a multiparametric comparison of radiation biomarkers in human blood in vivo, which have potential for improving biological dosimetry.


Assuntos
Leucócitos/efeitos da radiação , Exposição à Radiação , Radiometria/métodos , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Aberrações Cromossômicas , DNA Mitocondrial/efeitos da radiação , Relação Dose-Resposta à Radiação , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/radioterapia , Feminino , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Leucócitos/patologia , Masculino , Micronúcleos com Defeito Cromossômico , Pessoa de Meia-Idade , Radioterapia/efeitos adversos , Dosagem Radioterapêutica , Transcrição Gênica/efeitos da radiação
3.
Radiat Res ; 186(3): 264-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27538113

RESUMO

We examined the effect of epidermal growth factor (EGF) treatment in mice that received bone marrow transplantation (BMT) after 11 Gy whole-body irradiation. C57Bl/6 mice were divided into three treatment groups: 0 Gy; 11 Gy ((60)Co, single dose, 0.51 Gy/min) with BMT (5 × 10(6) bone marrow cells isolated from green fluorescent protein syngeneic mice, 3-4 h postirradiation); and 11 Gy with BMT and EGF (2 mg/kg applied subcutaneously 1, 3 and 5 days postirradiation). Survival data were collected. Bone marrow, peripheral blood count and cytokines, gastrointestine and liver parameters and migration of green fluorescent protein-positive cells were evaluated at 63 days postirradiation. Epidermal growth factor increased survival of irradiated animals that received BMT from 10.7 to 85.7% at 180 days postirradiation. In the BMT group, we found changes in differential bone marrow and blood count, plasma cytokine levels, gastrointestinal tissues and liver at 63 days postirradiation. These alterations were completely or in some parameters at least partially restored by epidermal growth factor. These findings indicate that epidermal growth factor, administered 1, 3 and 5 days postirradiation in combination with bone marrow transplantation, significantly improves long-term prognosis.


Assuntos
Transplante de Medula Óssea , Família de Proteínas EGF/farmacologia , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/efeitos da radiação , Contagem de Células , Citocinas/sangue , Relação Dose-Resposta à Radiação , Feminino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Intestinos/efeitos da radiação , Camundongos , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/efeitos da radiação , Lesões por Radiação/sangue , Lesões por Radiação/patologia , Segurança , Baço/efeitos dos fármacos , Baço/patologia , Baço/efeitos da radiação , Fatores de Tempo , Irradiação Corporal Total/efeitos adversos
4.
Int J Radiat Biol ; 91(9): 703-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25994811

RESUMO

PURPOSE: We examined the effect of epidermal growth factor (EGF) and bone marrow transplantation (BMT) on gastrointestinal damage after high-dose irradiation of mice. MATERIAL AND METHODS: C57Black/6 mice were used. Two survival experiments were performed (12 and 13 Gy; (60)Co, 0.59-0.57 Gy/min). To evaluate BMT and EGF action, five groups were established - 0 Gy, 13 Gy, 13 Gy + EGF (at 2 mg/kg, first dose 24 h after irradiation and then every 48 h), 13 Gy + BMT (5 × 10(6) cells from green fluorescent protein [GFP] syngenic mice, 4 h after irradiation), and 13 Gy + BMT + EGF. Survival data, blood cell counts, gastrointestine and liver parameters and GFP positive cell migration were measured. RESULTS: BMT and EGF (three doses, at 2 mg/kg, administered 1, 3 and 5 days after irradiation) significantly increased survival (13 Gy). In blood, progressive cytopenia was observed with BMT, EGF or their combination having no improving effect early after irradiation. In gastrointestinal system, BMT, EGF and their combination attenuated radiation-induced atrophy and increased regeneration during first week after irradiation with the combination being most effective. Signs of systemic inflammatory reaction were observed 30 days after irradiation. CONCLUSIONS: Our data indicate that BMT together with EGF is a promising strategy in the treatment of high-dose whole-body irradiation damage.


Assuntos
Transplante de Medula Óssea , Fator de Crescimento Epidérmico/uso terapêutico , Trato Gastrointestinal/lesões , Trato Gastrointestinal/efeitos da radiação , Lesões Experimentais por Radiação/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Terapia Combinada , Fator de Crescimento Epidérmico/administração & dosagem , Feminino , Trato Gastrointestinal/patologia , Inflamação/patologia , Litostatina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Lesões Experimentais por Radiação/tratamento farmacológico , Lesões Experimentais por Radiação/patologia , Irradiação Corporal Total/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...