Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 6: 132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259173

RESUMO

Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a "theranostic pair." Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.

4.
Curr Radiopharm ; 6(3): 152-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24059327

RESUMO

Radionuclide therapy (RNT) based on the concept of delivering cytotoxic levels of radiation to disease sites is one of the rapidly growing fields of nuclear medicine. Unlike conventional external beam therapy, RNT targets diseases at the cellular level rather than on a gross anatomical level. This concept is a blend of a tracer moiety that mediates a site specific accumulation followed by induction of cytotoxicity with the short-range biological effectiveness of particulate radiations. Knowledge of the biochemical reactions taking place at cellular levels has stimulated the development of sophisticated molecular carriers, catalyzing a shift towards using more specific targeting radiolabelled agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides based on availability, the types of emissions, linear energy transfer (LET), and physical half-life. This article discusses the applications of radionuclide therapy for treatment of cancer as well as other diseases. The primary objective of this review is to provide an overview on the role of radionuclide therapy in the treatment of different diseases such as polycythaemia, thyroid malignancies, metastatic bone pain, radiation synovectomy, hepatocellular carcinoma (HCC), neuroendocrine tumors (NETs), non-Hodgkin's lymphoma (NHL) and others. In addition, recent developments on the systematic approach in designing treatment regimens as well as recent progress, challenges and future perspectives are discussed. An examination of the progress of radionuclide therapy indicates that although a rapid stride has been made for treating hematological tumors, the development for treating solid tumors has, so far, been limited. However, the emergence of novel tumor-specific targeting agents coupled with successful characterization of new target structures would be expected to pave the way for future treatment for such tumors.


Assuntos
Neoplasias/radioterapia , Medicina Nuclear/métodos , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Radioterapia/métodos , Doenças Ósseas/radioterapia , Elétrons , Humanos , Transferência Linear de Energia , Nanopartículas/química , Tumores Neuroendócrinos/radioterapia , Manejo da Dor , Policitemia/radioterapia , Radioimunoterapia/métodos
5.
Nucl Med Biol ; 40(2): 167-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23142410

RESUMO

Several strategies for the effective separation of (99m)Tc from (99)Mo have been developed and validated. Due to the success of column chromatographic separation using acidic alumina coupled with high specific activity fission (99)Mo (F (99)Mo) for production of (99)Mo/(99m)Tc generators, however, most technologies until recently have generated little interest. The reduced availability of F (99)Mo and consequently the shortage of (99)Mo/(99m)Tc column generators in the recent past have resurrected interest in the production of (99)Mo as well as (99m)Tc by alternate routes. Most of these alternative production processes require separation techniques capable of providing clinical grade (99m)Tc from low specific activity (99)Mo or irradiated Mo targets. For this reason there has been renewed interest in alternate separation routes. This paper reviews the reported separation technologies which include column chromatography, solvent extraction, sublimation and gel systems that have been traditionally used for the fabrication of (99)Mo/(99m)Tc generator systems. The comparative advantage, disadvantage, and technical challenges toward adapting the emerging requirements are discussed. New developments such as solid-phase column extraction, electrochemical separation, extraction chromatography, supported liquid membrane (SLM) and thermochromatographic techniques are also being evaluated for their potential application in the changed scenario of providing (99m)Tc from alternate routes. Based on the analysis provided in this review, it appears that some proven separation technologies can be quickly resurrected for the separation of clinical grade (99m)Tc from macroscopic levels of reactor or cyclotron irradiated molybdenum targets. Furthermore, emerging technologies can be developed further to respond to the expected changing modes of (99m)Tc production.


Assuntos
Fracionamento Químico/métodos , Molibdênio/isolamento & purificação , Radioisótopos/isolamento & purificação , Tecnécio/isolamento & purificação , Humanos , Molibdênio/química , Radioquímica , Radioisótopos/química , Tecnécio/química
6.
J Nucl Med ; 54(2): 313-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23255729

RESUMO

The availability of (99m)Tc for single-photon imaging in diagnostic nuclear medicine is crucial, and current availability is based on the (99)Mo/(99m)Tc generator fabricated from fission-based molybdenum (F (99)Mo) produced using high enriched uranium (HEU) targets. Because of risks related to nuclear material proliferation, the use of HEU targets is being phased out and alternative strategies for production of both (99)Mo and (99m)Tc are being evaluated intensely. There are evidently no plans for replacement of the limited number of reactors that have primarily provided most of the (99)Mo. The uninterrupted, dependable availability of (99m)Tc is a crucial issue. For these reasons, new options being pursued include both reactor- and accelerator-based strategies to sustain the continued availability of (99m)Tc without the use of HEU. In this paper, the scientific and economic issues for transitioning from HEU to non-HEU are also discussed. In addition, the comparative advantages, disadvantages, technical challenges, present status, future prospects, security concerns, economic viability, and regulatory obstacles are reviewed. The international actions in progress toward evolving possible alternative strategies to produce (99)Mo or (99m)Tc are analyzed as well. The breadth of technologies and new strategies under development to provide (99)Mo and (99m)Tc reflects both the broad interest in and the importance of the pivotal role of (99m)Tc in diagnostic nuclear medicine.


Assuntos
Marcação por Isótopo/métodos , Molibdênio , Radioisótopos/provisão & distribuição , Tecnécio , Ciclotrons , Internacionalidade , Molibdênio/química , Medicina Nuclear/instrumentação , Medicina Nuclear/tendências , Geradores de Radionuclídeos , Tecnécio/química , Estados Unidos
7.
Q J Nucl Med Mol Imaging ; 56(4): 385-99, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23013668

RESUMO

Fission-produced 99Mo (F 99Mo) is traditionally used for fabrication of 99Mo/99mTc alumina-based column generators. In this paper, several emerging strategies are discussed which are being pursued or have been suggested to overcome the continuing shortages of F 99Mo. In addition to the hopeful eventual success of these proposed new 99Mo and 99mTc production technologies, an additional attractive strategy is the alternative production and use of low specific activity (LSA) 99Mo. This strategy avoids fission and is accomplished by direct activation of molybdenum targets in nuclear reactors, which would preclude sole continued reliance on F 99Mo. The principal focus of this paper is a detailed discussion on the advantages and strategies for enhanced production of LSA 99Mo using an international network of research reactors. Several effective strategies are discussed to obtain 99mTc from LSA 99Mo as well as more efficient use of the alumina-based generator system. The delayed time period between 99Mo production and traditional 99Mo/99mTc alumina column generator manufacture and distribution to user sites results in the loss of more than 50% of 99Mo activity. Another strategy is a paradigm shift in the use of 99Mo by recovering clinical-grade 99mTc from 99Mo solution as an alternative to use of 99Mo/99mTc column generators, thereby avoiding substantial decreased availability of 99Mo from radioactive decay. Implementation of the suggested strategies would be expected to increase availability of 99mTc to the clinical user community by several fold. Additional important advantages for the use of LSA 99Mo include eliminating the need for fission product waste management and precluding proliferation concerns by phasing out the need for high (HEU)- and low (LEU)-enriched uranium targets required for F 99Mo production.


Assuntos
Marcação por Isótopo/métodos , Molibdênio/química , Molibdênio/efeitos da radiação , Radioisótopos/química , Geradores de Radionuclídeos , Tecnécio/química , Prognóstico
10.
Semin Nucl Med ; 38(2): S19-29, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18243839

RESUMO

This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 ((188)W)/rhenium-188 ((188)Re) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the (188)Re-perrhenate bolus and preparation of (188)Re-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The (188)W/(188)Re generator has a long useful shelf-life of several months and is a convenient on-site (188)Re production system. (188)Re has excellent therapeutic and imaging properties (T(1/2) 16.9 hours; E(betamax) 2.12 MeV; 155-keV gamma ray, 15%) and is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of (188)Re-labeled agents has been demonstrated for several therapeutic applications. Because of the favorable physical properties of (188)Re, several (188)Re-labeled agents are being developed and evaluated for the treatment of nonresectable/refractory liver cancer. (188)Re-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of (188)Re-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) (188)W/(188)Re generators. The handling of such high levels of (188)Re imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (ie, "As Low As Reasonably Achievable") principles must be followed. The ORNL generator provides consistently high (188)Re yields (>75%) and low (188)W parent breakthrough (<10(-3)%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration of the (188)Re bolus by postelution passage through silver cation chloride trapping columns used in the cost-effective tandem cation/anion column system. The silver column removes the high levels of chloride anion as insoluble AgCl, thus allowing subsequent specific trapping of the perrhenate anion on the small (QMA SeaPak) anion column. This method permits subsequent elution of (188)Re-perrhenate with a small volume of saline, providing a very high activity-concentration solution. Because the (188)Re-specific volume-activity concentration continually decreases with time, the tandem system is especially effective method for extending the useful generator shelf-life. Low elution flow rates (<1 mL/min) minimize any high back pressure which may be encountered during generator/tandem column elution when using tightly packed, small-particle-size commercial columns. In-house preparation of silver cation columns is recommended since the chloride trapping capacity is essentially unlimited, it is inexpensive and not limited in availability to any one supplier, and back pressure can be eliminated by the use of larger particles. Methods for the preparation of (188)Re-HDD have been optimized and this agent can be obtained in high yield (80%).


Assuntos
Óleo Iodado/uso terapêutico , Neoplasias Hepáticas/radioterapia , Medicina Nuclear/instrumentação , Radioisótopos/isolamento & purificação , Radioisótopos/uso terapêutico , Geradores de Radionuclídeos/instrumentação , Rênio/isolamento & purificação , Rênio/uso terapêutico , Humanos , Óleo Iodado/administração & dosagem , Proteção Radiológica , Radioisótopos/administração & dosagem , Rênio/administração & dosagem , Tennessee , Tungstênio
11.
Endocrinology ; 148(8): 3625-34, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17463056

RESUMO

The nuclear receptor peroxisome proliferator activated receptor gamma (PPARgamma) is essential for murine placental development. We previously showed that activation of PPARgamma in primary human trophoblasts enhances the uptake of fatty acids and alters the expression of several proteins associated with fatty acid trafficking. In this study we examined the effect of ligand-activated PPARgamma on placental development and transplacental fatty acid transport in wild-type (wt) and PPARgamma(+/-) embryos. We found that exposure of pregnant mice to the PPARgamma agonist rosiglitazone for 8 d (embryonic d 10.5-18.5) reduced the weights of wt, but not PPARgamma(+/-) placentas and embryos. Exposure to rosiglitazone reduced the thickness of the spongiotrophoblast layer and the surface area of labyrinthine vasculature, and altered expression of proteins implicated in placental development. The expression of fatty acid transport protein 1 (FATP1), FATP4, adipose differentiation related protein, S3-12, and myocardial lipid droplet protein was enhanced in placentas of rosiglitazone-treated wt embryos, whereas the expression of FATP-2, -3, and -6 was decreased. Additionally, rosiglitazone treatment was associated with enhanced accumulation of the fatty acid analog 15-(p-iodophenyl)-3-(R, S)-methyl pentadecanoic acid in the placenta, but not in the embryos. These results demonstrate that in vivo activation of PPARgamma modulates placental morphology and fatty acid accumulation.


Assuntos
Ácidos Graxos/farmacocinética , PPAR gama/genética , PPAR gama/metabolismo , Placenta/citologia , Placenta/metabolismo , Animais , Feminino , Peso Fetal/efeitos dos fármacos , Peso Fetal/fisiologia , Genótipo , Hipoglicemiantes/farmacologia , Radioisótopos do Iodo , Iodobenzenos/farmacocinética , Ligantes , Masculino , Troca Materno-Fetal/efeitos dos fármacos , Troca Materno-Fetal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Placenta/efeitos dos fármacos , Gravidez , Rosiglitazona , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...