Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 130(4): 535-546, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35709943

RESUMO

BACKGROUND: Despite many studies on the importance of competition and plants' associations with mutualists and pathogens on plant performance and community organization, the joint effects of these two factors remain largely unexplored. Even less is known about how these joint effects vary through a plant's life in different environmental conditions and how they contribute to the long-term coexistence of species. METHODS: We investigated the role of plant-soil feedback (PSF) in intra- and interspecific competition, using two co-occurring dry grassland species as models. A two-phase PSF experiment was used. In the first phase, soil was conditioned by the two plant species. In the second, we assessed the effect of soil conditioning, competition and drought stress on seedling establishment, plant growth in the first and second vegetation season, and fruit production. We also estimated effects of different treatments on overall population growth rates and predicted the species' potential coexistence. RESULTS: Soil conditioning played a more important role in the early stages of the plants' life (seedling establishment and early growth) than competition. Specifically, we found strong negative intraspecific PSF for biomass production in the first year in both species. Although the effects of soil conditioning persisted in later stages of plant's life, competition and drought stress became more important. Surprisingly, models predicting species coexistence contrasted with the effects on individual life stages, showing that our model species benefit from their self-conditioned soil in the long run. CONCLUSIONS: We provide evidence that the effects of PSF vary through plants' life stages. Our study suggests that we cannot easily predict the effects of soil conditioning on long-term coexistence of species using data only on performance at a single time as commonly done in PSF studies. We also show the importance of using as realistic environmental conditions as possible (such as drought stress experienced in dry grasslands) to draw reasonable conclusions on species coexistence.


Assuntos
Plantas , Solo , Retroalimentação , Desenvolvimento Vegetal , Plântula , Microbiologia do Solo
2.
Oecologia ; 190(2): 411-423, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31154510

RESUMO

The family of orchids involves a number of critically endangered species. Understanding of drivers of their landscape distribution could provide a valuable insight into their decline. Our objectives were to develop models predicting distribution of selected orchid species-four co-occurring forest orchid species, Cephalanthera rubra, Epipactis atrorubens, E. helleborine, and Neottia nidus-avis-at a landscape scale using a wide range of habitat characteristics. Subsequently, we compared the model predictions with species occurrence and the results of the field germination experiment while considering two germination stages-asymbiotic (early stage) and symbiotic. And finally, we attempted to identify possible drivers of species' landscape distribution (i.e., dispersal, availability of habitat patches, or fungal associates). We have discovered that different habitat characteristics determined the distribution of different orchids. The species also differed in terms of availability of suitable habitat patches and patch occupancy (the highest being E. atrorubens with 80%). Landscape distribution of the species was primarily restricted by the availability of fungal associates (the most important factor for C. rubra) and by the availability of suitable habitat patches (the most important in case of N. nidus-avis). Despite expected easy dispersal of spores, orchid distribution seems to be limited by the availability of fungal associates in the landscape. In contrast, the availability of orchid seeds does not seem to limit their distribution. These results can provide useful guidelines for conservation of the studied species.


Assuntos
Micorrizas , Orchidaceae , Animais , Ecossistema , Florestas , Germinação , Simbiose
3.
Sci Rep ; 9(1): 8967, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222130

RESUMO

Carabids are considered beneficial arthropods in agroecosystems, where they prey on crop pests or consume weed seeds. Therefore, knowledge of the spatial distribution of carabids in agricultural landscapes is crucial to efficiently manage the ecosystem services that they provide. In the present study, we investigated the spatial distribution of carabids around arable field-woodlot boundaries in different seasons: (1) early spring, (2) late spring, (3) summer and (4) late autumn. The spatial distribution of carabid abundance (activity-density) and species richness varied seasonally, and the total abundance was highest within arable fields, except in early spring when it peaked at the boundaries. The observed pattern was mainly driven by the spatial distribution of the open-habitat species, which aggregated near the field boundaries during winter and early spring. The open-habitat species penetrated into woodlots during the summer season but occurred almost exclusively outside woodlots in the other sampling periods. The abundance of the forest species was highest within woodlots with the exception of the early spring season, when their abundance peaked at the boundaries. Carabid species richness was highest within arable fields in close proximity to woodlot boundaries with the exception of the summer season, when the total species richness was similar across habitats.


Assuntos
Biodiversidade , Besouros , Ecossistema , Análise Espaço-Temporal , Animais , Dinâmica Populacional
4.
PLoS One ; 11(7): e0158925, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391899

RESUMO

BACKGROUND: The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood. AIMS AND METHODS: The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field) with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities. KEY RESULTS: The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data indicate that changes in the AMF communities are the most likely drivers of the observed changes. The effects of other soil biota, however, cannot be fully excluded. CONCLUSIONS: These results suggest that the availability of soil fungi may not be the most important limiting factor for the establishment of grassland species in abandoned fields if we manage to reduce the intensity of competition at these sites e.g., by mowing or grazing.


Assuntos
Pradaria , Consórcios Microbianos/fisiologia , Micorrizas/fisiologia , Microbiologia do Solo
5.
PLoS One ; 11(6): e0157800, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336400

RESUMO

BACKGROUND: Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. AIMS AND METHODS: In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. KEY RESULTS: In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. CONCLUSIONS: All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies.


Assuntos
Ecossistema , Plantas , Solo , República Tcheca , Jardins , Pradaria , Plântula , Solo/química
6.
J Insect Sci ; 13: 6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23879296

RESUMO

Because of its direct consequences on reproductive success, body condition is an often-studied individual trait in insects. Various studies on insects use disparate methods to assess "body condition." However, it is doubtful that the results obtained by disparate methods are comparable. In this study, the body conditions of Poecilus cupreus (Linnaeus) (Coleoptera: Carabidae) from eight sites were compared based on the following commonly used variables: (i) fresh weight, (ii) dry weight, and (iii) fat content. All of these variables were corrected for structural body size. Moreover, the effects of using the following ways of assessing structural body size were examined: (a) one size measurement (length of elytron, which is commonly used in beetles), and (b) three size measurements (length of elytron, width of pronotum and length of hind femur). The results obtained using the various estimations of body condition (i, ii, iii) varied significantly. Therefore, studies employing distinct body measurements to assess body condition are not comparable to each other. Using multiple structural size measurements in body condition analyses is better than the common practice of using only one size measurement. However, in the present study, results provided by both methods differ only slightly. A recommendation on the use of terminology in studies on body condition is introduced.


Assuntos
Peso Corporal , Besouros/fisiologia , Gorduras/análise , Tecido Adiposo , Animais , Besouros/química , Feminino , Masculino
7.
PLoS One ; 8(6): e65879, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755288

RESUMO

Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle.


Assuntos
Poaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Agricultura , República Tcheca , Ecossistema , Flores/crescimento & desenvolvimento , Magnoliopsida/crescimento & desenvolvimento , Estações do Ano , Solo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...