Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 22(18): 2225-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25994861

RESUMO

Chagas' disease is one of the most impactful and prevalent neglected tropical diseases in the Americas, specially affecting the poor and underdeveloped areas in Latin America. Aggravating this scenario, the medicines used in the current chemotherapy are old, toxic and present a low efficacy to treat the chronic stage of this disease. In addition, resistant strains of Trypanosoma cruzi, the etiological agent, are frequently reported. So, there is an imperative requirement for novel chemotherapeutic options to treat this debilitating disease. In this context, peptidases have emerged as potential targets and, consequently, proteolytic inhibitors have confirmed to be valuable drugs against several human pathologies. In this line of thinking, T. cruzi produces a major multifunctional cysteine peptidase, named cruzipain, which directly and/or indirectly orchestrates several physiological and pathological processes, which culminate in a successful parasitic infection. Taken together, these findings point out that cruzipain is one of the most important targets for driving a chemotherapy approach against the human pathogen T. cruzi. The present review summarizes some of the recent advances and failures in this area, with particular emphasis on recently published studies.


Assuntos
Antineoplásicos/farmacologia , Antiprotozoários/farmacologia , Cisteína Endopeptidases/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Antineoplásicos/química , Antiprotozoários/química , Cisteína Endopeptidases/química , Conformação Molecular , Testes de Sensibilidade Parasitária , Proteínas de Protozoários
2.
Curr Med Chem ; 19(17): 2715-37, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22455582

RESUMO

Infections caused by resistant microorganisms often fail to respond to conventional therapy, resulting in prolonged illness, increased treatment costs and greater risk of death. Consequently, the development of novel antimicrobial drugs is becoming more demanding every day since the existing drugs either have too many side-effects or they tend to lose effectiveness due to the selection of resistant strains. In view of these facts, a number of new strategies to obstruct vital biological processes of a microbial cell have emerged; one of these is focused on the use of metal-chelating agents, which are able to selectively disturb the essential metal metabolism of the microorganism by interfering with metal acquisition and bioavailability for crucial reactions. The chelation activity is able to inhibit the biological role of metal-dependent proteins (e.g., metalloproteases and transcription factors), disturbing the microbial cell homeostasis and culminating in the blockage of microbial nutrition, growth and development, cellular differentiation, adhesion to biotic (e.g., extracellular matrix components, cell and/or tissue) and abiotic (e.g., plastic, silicone and acrylic) structures as well as controlling the in vivo infection progression. Interestingly, chelating agents also potentiate the activity of classical antimicrobial compounds. The differences between the microorganism and host in terms of the behavior displayed in the presence of chelating agents could provide exploitable targets for the development of an effective chemotherapy for these diseases. Consequently, metal chelators represent a novel group of antimicrobial agents with potential therapeutic applications. This review will focus on the anti-fungal and anti-protozoan action of the most common chelating agents, deciphering and discussing their mode of action.


Assuntos
Anti-Infecciosos/farmacologia , Antiprotozoários/farmacologia , Quelantes/farmacologia , Fungos/efeitos dos fármacos , Animais , Fungos/crescimento & desenvolvimento , Fungos/patogenicidade , Humanos , Plasmodium/efeitos dos fármacos , Plasmodium/crescimento & desenvolvimento , Plasmodium/patogenicidade , Trypanosoma/efeitos dos fármacos , Trypanosoma/crescimento & desenvolvimento , Trypanosoma/patogenicidade
3.
Oral Dis ; 16(5): 431-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20233327

RESUMO

OBJECTIVE: This study describes the expression of acidic ectophosphatase activity on twenty isolates of C. albicans from oral cavities of HIV-infected children (HIV+) and compares them with fifteen isolates from HIV-negative children (HIV-), as well as the fungal adhesion to epithelial cells and medical records. METHODS: The activities were measured in intact cells grown in BHI medium for 48 h at 37 degrees C. Phosphatase activity was assayed at pH 5.5 using 4-methylumbelliferyl phosphate. Yeast adhesion was measured using the MA 104 epithelial cell line. RESULTS: Mean values of ectophosphatase activity were 610.27 +/- 166.36 and 241.25 +/- 78.96 picomoles 4-methylumbelliferone/h/10(7) cells for HIV+ and HIV- group, respectively (P = 0.049). No correlation between C. albicans enzyme activity from HIV children with viral load and CD4 percentual was observed. Yeasts with high enzyme activity, isolated from HIV+ children showed greater adherence than yeasts with basal levels of ectophosphatases from HIV- (Spearman correlation, r = 0.8). Surface phosphatase activity was apparently involved in the adhesion to host cells, as the enhanced attachment of C. albicans to host epithelial cells was reversed by pretreatment of yeast with sodium orthovanadate (1 mM), an acid phosphatase inhibitor. CONCLUSION: These results show that C. albicans from HIV+ has an ectophosphatase activity significantly higher than the other isolates. Yeasts expressing higher levels of surface phosphatase activity showed greater adhesion to epithelial cells. So, the activity of acidic surface phosphatases on these cells may contribute to the early mechanisms required for disease establishment.


Assuntos
Fosfatase Ácida/metabolismo , Candida albicans/enzimologia , Soronegatividade para HIV , Soropositividade para HIV/microbiologia , Fosfatase Ácida/antagonistas & inibidores , Animais , Contagem de Linfócito CD4 , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular , Criança , Inibidores Enzimáticos/farmacologia , Células Epiteliais/microbiologia , HIV/isolamento & purificação , Soropositividade para HIV/virologia , Humanos , Concentração de Íons de Hidrogênio , Himecromona/análogos & derivados , Indicadores e Reagentes , Mucosa Bucal/microbiologia , Mucosa Bucal/patologia , Vanadatos/farmacologia , Carga Viral
4.
Med Mycol ; 41(6): 469-77, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14725320

RESUMO

The activity of a phosphatase was characterized in intact mycelial forms of Fonsecaea pedrosoi, a pathogenic fungus that causes chromoblastomycosis. At pH 5.5, this fungus hydrolyzed p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 12.78 +/- 0.53 nmol p-NP per h per mg hyphal dry weight. The values of Vmax and apparent Km for p-NPP hydrolyses were measured as 17.89 +/- 0.92 nmol p-NP per h per mg hyphal dry weight and 1.57 +/- 0.26 mmol/l, respectively. This activity was inhibited at increased pH, a finding compatible with an acid phosphatase. The enzymatic activity was strongly inhibited by classical inhibitors of acid phosphatases such as sodium orthovanadate (Ki = 4.23 micromol/l), sodium molybdate (Ki = 7.53 micromol/l) and sodium fluoride (Ki = 126.78 micromol/l) in a dose-dependent manner. Levamizole (1 mmol/l) and sodium tartrate (10 mmol/l), had no effect on the enzyme activity. Cytochemical localization of the acid phosphatase showed electrondense cerium phosphate deposits on the cell wall, as visualized by transmission electron microscopy. Phosphatase activity in F. pedrosoi seems to be associated with parasitism, as sclerotic cells, which are the fungal forms mainly detected in chromoblastomycosis lesions, showed much higher activities than conidia and mycelia did. A strain of F. pedrosoi recently isolated from a human case of chromoblastomycosis also showed increased enzyme activity, suggesting that the expression of surface phosphatases may be stimulated by interaction with the host.


Assuntos
Ascomicetos/enzimologia , Parede Celular/enzimologia , Cromoblastomicose/microbiologia , Monoéster Fosfórico Hidrolases/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Parede Celular/metabolismo
5.
Exp Parasitol ; 89(2): 195-204, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9635443

RESUMO

The expression of chitin as a structural component of Trichomonas vaginalis and Tritrichomonas foetus was demonstrated by using enzymatic hydrolysis by recombinant (rec-) chitinase, chemical analysis, lectin, fluorescent Calcofluor and antibody binding, glycosidases of known specificity, high-performance liquid chromatography (HPLC), and flow cytometry. Chitinous structures were characterized by their insolubility in hot alkali and by releasing glucosamine on hydrolysis with 6 N HCl. N,N'-Diacetylchitobiose and N,N,'N''-triacetylchitotriose were identified by HPLC as enzymatic hydrolysis products of the alkali-resistant polysaccharide. The location of chitin on the surface of T. vaginalis and T. foetus was inferred from the decreased reactivity with whole parasites of ligands such as Lycopersicon esculentum (TOL) and Solanum tuberosum lectins, fluorescent Calcofluor, and anti-chitin antibody, after cell treatment with rec-chitinase. Binding of [125I]TOL showed that, in T. vaginalis and T. foetus, the numbers of lectin receptors per cell were 4.2 x 10(5) and 3.0 x 10(5), respectively. Binding of the lectin to the trichomonad surface was markedly decreased by treatment with rec-chitinase. TOL interaction with the parasites was not affected by N-acetyl-beta-D-glucosaminidase treatment, showing that the lectin receptors consisted of beta-linked GlcNAc polymers and not of terminal beta-linked GlcNAc residues.


Assuntos
Quitina/biossíntese , Trichomonas vaginalis/metabolismo , Tritrichomonas foetus/metabolismo , Animais , Benzenossulfonatos/metabolismo , Quitina/análise , Quitina/isolamento & purificação , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Hidrólise , Ligantes , Solubilidade , Trichomonas vaginalis/química , Trichomonas vaginalis/ultraestrutura , Tritrichomonas foetus/química , Tritrichomonas foetus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...