Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 67(20): 5711-5719, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31042038

RESUMO

Although dicamba has long been one of the most widely used selective herbicides, some U.S. states have banned the sale and use of dicamba because of farmers complaints of drift and damage to nonresistant crops. To prevent illegal use of dicamba and allow monitoring of nonresistant crops, a rapid and sensitive method for detection of dicamba is critical. In this paper, three novel dicamba haptens with an aldehyde group were synthesized, conjugated to the carrier protein via a reductive-amination procedure and an indirect competitive chemiluminescent enzyme immunoassay (CLEIA) for dicamba was developed. The assay showed an IC50 of 0.874 ng/mL which was over 15 times lower than that of the conventional enzyme immunoassay. The immunoassay was used to quantify dicamba concentrations in field samples of soil and soybean obtained from fields sprayed with dicamba. The developed CLEIA showed an excellent correlation with LC-MS analysis in spike-and-recovery studies, as well as in real samples. The recovery of dicamba ranged from 86 to 108% in plant samples and from 105 to 107% in soil samples. Thus, this assay is a rapid and simple analytical tool for detecting and quantifying dicamba levels in environmental samples and potentially a great tool for on-site crop and field monitoring.


Assuntos
Anticorpos/análise , Dicamba/química , Haptenos/química , Herbicidas/química , Técnicas Imunoenzimáticas/métodos , Medições Luminescentes/métodos , Animais , Anticorpos/imunologia , Imunização , Técnicas Imunoenzimáticas/instrumentação , Medições Luminescentes/instrumentação , Espectrometria de Massas , Estrutura Molecular , Folhas de Planta/química , Coelhos , Poluentes do Solo/química , Glycine max/química , Espectrometria de Massas em Tandem
2.
Plant J ; 96(5): 1051-1063, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218635

RESUMO

Pollen-mediated gene flow (PMGF) might play an important role in dispersing herbicide resistance alleles in dioecious weedy Amaranthus species. Field experiments in a concentric donor-receptor design were conducted to quantify two sets of PMGF studies, an interspecific (Amaranthus tuberculatus × Amaranthus palmeri) and an intraspecific (A. tuberculatus × A. tuberculatus). In both studies, PMGF was evaluated using a resistant A. tuberculatus phenotype with enhanced mesotrione detoxification via P450 enzymes as a source of resistance alleles. For interspecific hybridization, more than 104 000 putative hybrid seedlings were screened with three markers, one phenotypic and two molecular. The two molecular markers used, including 2-bp polymorphisms in the internal transcribed spacer region, distinguished A. palmeri, A. tuberculatus and their hybrids. Results showed that 0.1% hybridization between A. tuberculatus × A. palmeri occurred under field research conditions. For intraspecific hybridization, 22 582 seedlings were screened to assess the frequency of gene flow. The frequency of gene flow (FGF ) varied with distance, direction and year of the study. The farthest distance for 90% reduction of FGF was at 69 m in 2015 however, after averaging across directions it was 13.1 and 26.1 m in 2014 and 2015, respectively. This study highlights the transfer of metabolism-based mesotrione resistance from A. tuberculatus to A. palmeri under field research conditions. The results presented here might aid in the rapid detection of A. palmeri among other Amaranthus species and show that PMFG could be expediting the increase of herbicide resistance in A. palmeri and A. tuberculatus across US crop production areas.


Assuntos
Amaranthus/metabolismo , Cicloexanonas , Resistência a Herbicidas , Herbicidas , Amaranthus/genética , Cicloexanonas/metabolismo , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Hibridização Genética
3.
Front Plant Sci ; 9: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456544

RESUMO

A population of Amaranthus tuberculatus (var. rudis) evolved resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides (mesotrione, tembotrione, and topramezone) in Nebraska. The level of resistance was the highest to mesotrione, and the mechanism of resistance in this population is metabolism-based likely via cytochrome P450 enzymes. The increasing number of weeds resistant to herbicides warrants studies on the ecology and evolutionary factors contributing for resistance evolution, including inheritance of resistance traits. In this study, we investigated the genetic control of mesotrione resistance in an A. tuberculatus population from Nebraska, USA. Results showed that reciprocal crosses in the F1 families exhibited nuclear inheritance, which allows pollen movement carrying herbicide resistance alleles. The mode of inheritance varied from incomplete recessive to incomplete dominance depending upon the F1 family. Observed segregation patterns for the majority of the F2 and back-cross susceptible (BC/S) families did not fit to a single major gene model. Therefore, multiple genes are likely to confer metabolism-based mesotrione resistance in this A. tuberculatus population from Nebraska. The results of this study aid to understand the genetics and inheritance of a non-target-site based mesotrione resistant A. tuberculatus population from Nebraska, USA.

4.
Pest Manag Sci ; 74(10): 2296-2305, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28799707

RESUMO

BACKGROUND: A population of Amaranthus tuberculatus (var. rudis) was confirmed resistant to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor herbicides (mesotrione, tembotrione, and topramezone) in a seed corn/soybean rotation in Nebraska. Further investigation confirmed a non-target-site resistance mechanism in this population. The main objective of this study was to explore the role of cytochrome P450 inhibitors in restoring the efficacy of HPPD-inhibitor herbicides on the HPPD-inhibitor resistant A. tuberculatus population from Nebraska, USA (HPPD-R). RESULTS: Enhanced metabolism via cytochrome P450 enzymes is the mechanism of resistance in HPPD-R. Amitrole partially restored the activity of mesotrione, whereas malathion, amitrole, and piperonyl butoxide restored the activity of tembotrione and topramezone in HPPD-R. Although corn was injured through malathion followed by mesotrione application a week after treatment, the injury was transient, and the crop recovered. CONCLUSION: The use of cytochrome P450 inhibitors with tembotrione may provide a new way of controlling HPPD-inhibitor resistant A. tuberculatus, but further research is needed to identify the cytochrome P450 candidate gene(s) conferring metabolism-based resistance. The results presented here aid to gain an insight into non-target-site resistance weed management strategies. © 2017 Society of Chemical Industry.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Amaranthus/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Amaranthus/enzimologia , Amaranthus/fisiologia , Cicloexanonas/farmacologia , Nebraska , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/enzimologia , Plantas Daninhas/fisiologia , Pirazóis/farmacologia , Sulfonas/farmacologia
5.
Front Plant Sci ; 8: 1455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28868065

RESUMO

Common ragweed emerges early in the season in Nebraska, USA and is competitive with soybean; therefore, preplant herbicides are important for effective control. Glyphosate has been used as a preplant control option; however, confirmation of glyphosate-resistant (GR) common ragweed in Nebraska necessitates evaluating other herbicide options. The objectives of this study were to (1) evaluate the efficacy of preplant (PP) herbicides followed by (fb) glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor applied post-emergence (POST) for control of GR common ragweed in glufosinate-resistant soybean; (2) their effect on common ragweed density, biomass, and soybean yield; and (3) the partial economics of herbicide programs. A field experiment was conducted in a grower's field infested with GR common ragweed in Gage County, Nebraska, USA in 2015 and 2016. Preplant herbicide programs containing glufosinate, paraquat, 2,4-D, dimethenamid-P, cloransulam-methyl, or high rates of flumioxazin plus chlorimuron-ethyl provided 90-99% control of common ragweed at 21 d after treatment (DAT). The aforementioned PP herbicides fb a POST application of glufosinate alone or in tank-mixture with imazethapyr, acetochlor, or S-metolachlor controlled GR common ragweed 84-98% at soybean harvest, reduced common ragweed density (≤20 plants m-2) and biomass by ≥93%, and secured soybean yield 1,819-2,158 kg ha-1. The PP fb POST herbicide programs resulted in the highest gross profit margins (US$373-US$506) compared to PP alone (US$91) or PRE fb POST programs (US$158). The results of this study conclude that effective and economical control of GR common ragweed in glufosinate-resistant soybean is achievable with PP fb POST herbicide programs.

6.
Sci Rep ; 7: 44913, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327669

RESUMO

Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States.


Assuntos
Amaranthus/efeitos dos fármacos , Amaranthus/genética , Fluxo Gênico , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Pólen , Polinização , Glicina/farmacologia , Herbicidas/farmacologia , Padrões de Herança , Modelos Teóricos , Fenótipo , Dispersão Vegetal/genética , Plantas Daninhas/genética , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...