Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(37): 12862-12867, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31183909

RESUMO

A two-component core-shell UiO-68 type metal-organic framework (MOF) with a nonfunctionalized interior for efficient guest uptake and storage and a thin light-responsive outer shell was prepared by initial solvothermal MOF synthesis followed by solvent-assisted linker exchange. The bulky shell linker features two tetra-ortho-fluorinated azobenzene moieties to exploit their advantageous photoisomerization properties. The obtained perfect octahedral MOF single crystals can be switched repeatedly and with an unprecedented efficiency between E- and Z-rich states using visible light only. Due to the high photoswitch density per pore of the shell layer, its steric demand and thus molecular uptake (and release) can be conveniently modulated upon green and blue light irradiation. Therefore, the "smart" shell acts as a light-controlled kinetic barrier or "gate" for the diffusion of cargo molecules in and out of the MOF crystals.

2.
Small ; 14(50): e1803274, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30353702

RESUMO

Light responsive materials that are able to change their shape are becoming increasingly important. However, preconfigurable bistable or even multi-stable visible light responsive coatings have not been reported yet. Such materials will require less energy to actuate and will have a longer lifetime. Here, it is shown that fluorinated azobenzenes can be used to create rewritable and pre-configurable responsive surfaces that show multi-stable topographies. These surface structures can be formed and removed by using low intensity green and blue light, respectively. Multistable preconfigured surface topographies can also be created in the absence of a mask. The method allows for full control over the surface structures as the topographical changes are directly linked to the molecular isomerization processes. Preliminary studies reveal that these light responsive materials are suitable as adaptive biological surfaces.

3.
Nat Commun ; 7: 11975, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27375235

RESUMO

Nature provides much inspiration for the design of materials capable of motion upon exposure to external stimuli, and many examples of such active systems have been created in the laboratory. However, to achieve continuous motion driven by an unchanging, constant stimulus has proven extremely challenging. Here we describe a liquid crystalline polymer film doped with a visible light responsive fluorinated azobenzene capable of continuous chaotic oscillatory motion when exposed to ambient sunlight in air. The presence of simultaneous illumination by blue and green light is necessary for the oscillating behaviour to occur, suggesting that the dynamics of continuous forward and backward switching are causing the observed effect. Our work constitutes an important step towards the realization of autonomous, persistently self-propelling machines and self-cleaning surfaces powered by sunlight.

4.
Chemistry ; 20(50): 16492-501, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25352421

RESUMO

Improving the photochemical properties of molecular photoswitches is crucial for the development of light-responsive systems in materials and life sciences. ortho-Fluoroazobenzenes are a new class of rationally designed photochromic azo compounds with optimized properties, such as the ability to isomerize with visible light only, high photoconversions, and unprecedented robust bistable character. Introducing σ-electron-withdrawing F atoms ortho to the NN unit leads to both an effective separation of the n→π* bands of the E and Z isomers, thus offering the possibility of using these two transitions for selectively inducing E/Z isomerizations, and greatly enhanced thermal stability of the Z isomers. Additional para-electron-withdrawing groups (EWGs) work in concert with ortho-F atoms, giving rise to enhanced separation of the n→π* transitions. A comprehensive study of the effect of substitution on the key photochemical properties of ortho-fluoroazobenzenes is reported herein. In particular, the position, number, and nature of the EWGs have been varied, and the visible light photoconversions, quantum yields of isomerization, and thermal stabilities have been measured and rationalized by DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...