Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004147

RESUMO

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Fosfatase 2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Fosforilação , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Especificidade por Substrato
3.
Cell Rep ; 33(3): 108290, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086063

RESUMO

JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 h), resulting in specific transcriptional repression. After 8 h, subsequent alterations in gene expression arise as a result of the global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 is solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell-cycle regulation by JQ1 is associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Linfócitos B/metabolismo , Proteína 11 Semelhante a Bcl-2/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Adv ; 6(18)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32917631

RESUMO

The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3' polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.

5.
Genes Dev ; 32(11-12): 849-864, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29907650

RESUMO

Activating JAK2 point mutations are implicated in the pathogenesis of myeloid and lymphoid malignancies, including high-risk B-cell acute lymphoblastic leukemia (B-ALL). In preclinical studies, treatment of JAK2 mutant leukemias with type I JAK2 inhibitors (e.g., Food and Drug Administration [FDA]-approved ruxolitinib) provided limited single-agent responses, possibly due to paradoxical JAK2Y1007/1008 hyperphosphorylation induced by these agents. To determine the importance of mutant JAK2 in B-ALL initiation and maintenance, we developed unique genetically engineered mouse models of B-ALL driven by overexpressed Crlf2 and mutant Jak2, recapitulating the genetic aberrations found in human B-ALL. While expression of mutant Jak2 was necessary for leukemia induction, neither its continued expression nor enzymatic activity was required to maintain leukemia survival and rapid proliferation. CRLF2/JAK2 mutant B-ALLs with sustained depletion or pharmacological inhibition of JAK2 exhibited enhanced expression of c-Myc and prominent up-regulation of c-Myc target genes. Combined indirect targeting of c-Myc using the BET bromodomain inhibitor JQ1 and direct targeting of JAK2 with ruxolitinib potently killed JAK2 mutant B-ALLs.


Assuntos
Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Mutação , Nitrilas , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas , Interferência de RNA , Receptores de Citocinas/genética , Transcriptoma , Triazóis/farmacologia
6.
Sci Immunol ; 3(23)2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776993

RESUMO

Immunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8+ T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8+ T cell-mediated killing and blunted antitumor immune responses in vivo. Deletion of a number of genes in the TNF pathway also emerged as the key mechanism of immune evasion from primary NK cells. Our screens also identified that the metabolic protein 2-aminoethanethiol dioxygenase (Ado) modulates sensitivity to TNF-mediated killing by cytotoxic lymphocytes and is required for optimal control of tumors in vivo. Remarkably, we found that tumors delete the same genes when exposed to perforin-deficient CD8+ T cells, demonstrating that the dominant immune evasion strategy used by tumor cells is acquired resistance to T cell-derived cytokine-mediated antitumor effects. We demonstrate that TNF-mediated bystander killing is a potent T cell effector mechanism capable of killing antigen-negative tumor cells. In addition to highlighting the importance of TNF in CD8+ T cell- and NK cell-mediated killing of tumor cells, our study also provides a comprehensive picture of the roles of the TNF, IFN, and antigen presentation pathways in immune-mediated tumor surveillance.


Assuntos
Interferon gama/imunologia , Evasão Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Células Matadoras Naturais/imunologia , Camundongos
8.
Toxicol In Vitro ; 29(7): 1793-808, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26196530

RESUMO

Given the increasing use of silver nanoparticles (Ag NP) by the food and food packaging industries, this study investigated potential consequences of Ag NP ingestion in intestinal epithelial C2BBe1 cells. Treatment of proliferating cells (<10,000 cells/cm(2)) with 0.25 µg/cm(2) (1.25 µg/mL) of 23 nm Ag NP for 24 h induced 15% necrotic cell death and an 80% reduction in metabolic activity and decreased the GSH/GSSG ratio, indicating oxidative stress. G2/M phase cell cycle arrest and complete inhibition of cell proliferation was also induced by Ag NP treatment. Simulated in vitro digestion of Ag NP prior to cell exposure required the use of slightly higher doses to induce the same toxicity, likely due to slower Ag dissolution. Treatment of cells with silica, titania, and ZnO NP partially inhibited cell proliferation, but inhibition at low doses was unique to Ag NP. These data suggest that Ag NP induces oxidative stress, cell cycle arrest, and the inhibition of cell proliferation. However, toxicity and induction of oxidative stress were not observed in confluent cells (>100,000 cells/cm(2)) treated with 10 µg/cm(2) (40-50 µg/mL) Ag NP, indicating that these cells are less sensitive to Ag NP.


Assuntos
Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/citologia , Humanos , Mucosa Intestinal/citologia , Estresse Oxidativo , Dióxido de Silício/toxicidade , Titânio/toxicidade , Óxido de Zinco/toxicidade
9.
Int J Nanomedicine ; 10: 1547-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25759579

RESUMO

Nanoparticles are used in a variety of consumer applications. Silica nanoparticles in particular are common, including as a component of foods. There are concerns that ingested nano-silica particles can cross the intestinal epithelium, enter the circulation, and accumulate in tissues and organs. Thus, tracking these particles is of interest, and fluorescence spectroscopic methods are well-suited for this purpose. However, nanosilica is not fluorescent. In this article, we focus on core-silica shell nanoparticles, using fluorescent Rhodamine 6G, Rhodamine 800, or CdSe/CdS/ZnS quantum dots as the core. These stable fluorophore/silica nanoparticles had surface characteristics similar to those of commercial silica particles. Thus, they were used as model particles to examine internalization by cultured cells, including an epithelial cell line relevant to the gastrointestinal tract. Finally, these particles were administered to mice by gavage, and their presence in various organs, including stomach, small intestine, cecum, colon, kidney, lung, brain, and spleen, was examined. By combining confocal fluorescence microscopy with inductively coupled plasma mass spectrometry, the presence of nanoparticles, rather than their dissolved form, was established in liver tissues.


Assuntos
Corantes Fluorescentes , Nanopartículas , Dióxido de Silício , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/toxicidade , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Pontos Quânticos , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/toxicidade , Espectrometria de Fluorescência , Distribuição Tecidual
10.
Nat Chem Biol ; 10(11): 943-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282504

RESUMO

Epitope-based peptide vaccines encompass minimal immunogenic regions of protein antigens to allow stimulation of precisely targeted adaptive immune responses. However, because efficacy is largely determined by the functional status of antigen-presenting cells (APCs) that acquire and present peptides to cells of the adaptive immune system, adjuvant compounds are needed to enhance immunogenicity. We present here a vaccine consisting of an allergen-derived peptide conjugated to a prodrug of the natural killer-like T (NKT) cell agonist α-galactosylceramide, which is highly effective in reducing inflammation in a mouse model of allergic airway inflammation. Unlike other peptide-adjuvant conjugates that directly activate APCs through pattern recognition pathways, this vaccine encourages third-party interactions with NKT cells to enhance APC function. Therapeutic efficacy was correlated with marked increases in the number and functional activity of allergen-specific cytotoxic T lymphocytes (CTLs), leading to suppression of immune infiltration into the lungs after allergen challenge in sensitized hosts.


Assuntos
Adjuvantes Imunológicos , Hipersensibilidade/imunologia , Pró-Fármacos/química , Linfócitos T Citotóxicos/imunologia , Vacinas/imunologia , Alérgenos/administração & dosagem , Alérgenos/química , Alérgenos/imunologia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Modelos Animais de Doenças , Feminino , Galactosilceramidas/metabolismo , Galactosilceramidas/farmacologia , Galactosilceramidas/uso terapêutico , Hipersensibilidade/tratamento farmacológico , Imunoglobulina E/sangue , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Peptídeos/administração & dosagem , Peptídeos/química , Peptídeos/imunologia , Pró-Fármacos/metabolismo , Linfócitos T Citotóxicos/efeitos dos fármacos , Vacinas/administração & dosagem , Vacinas/síntese química , Vacinas/química
11.
J Leukoc Biol ; 96(6): 1001-10, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25170118

RESUMO

This study tests the hypothesis that CD8α(+) DCs in the spleen of mice contain an immature precursor for functionally mature, "classical" cross-presenting CD8α(+) DCs. The lymphoid tissues contain a network of phenotypically distinct DCs with unique roles in surveillance and immunity. Splenic CD8α(+) DCs have been shown to exhibit a heightened capacity for phagocytosis of cellular material, secretion of IL-12, and cross-priming of CD8(+) T cells. However, this population can be subdivided further on the basis of expression of both langerin/CD207 and CX(3)CR1. We therefore evaluated the functional capacities of these different subsets. The CX(3)CR1(+) CD8α(+) DC subset does not express langerin and does not exhibit the classical features above. The CX(3)CR1(-) CD8α(+) DC can be divided into langerin-positive and negative populations, both of which express DEC205, Clec9A, and high basal levels of CD86. However, the langerin(+) CX(3)CR1(-) CD8α(+) subset has a superior capacity for acquiring cellular material and producing IL-12 and is more susceptible to activation-induced cell death. Significantly, following purification and adoptive transfer into new hosts, the langerin(-) CX(3)CR1(-) CD8α(+) subset survives longer, up-regulates expression of langerin, and becomes more susceptible to activation-induced cell death. Last, in contrast to langerin(+) CX(3)CR1(-) CD8α(+), the langerin(-) CX(3)CR1(-) CD8α(+) are still present in Batf3(-/-) mice. We conclude that the classical attributes of CD8α(+) DC are confined primarily to the langerin(+) CX(3)CR1(-) CD8α(+) DC population and that the langerin(-) CX(3)CR1(-) subset represents a Batf3-independent precursor to this mature population.


Assuntos
Imunidade Adaptativa , Antígenos de Diferenciação/análise , Células Dendríticas/classificação , Transferência Adotiva , Animais , Apresentação de Antígeno , Antígenos de Superfície/análise , Antígenos de Superfície/biossíntese , Antígenos de Superfície/genética , Fatores de Transcrição de Zíper de Leucina Básica/análise , Antígenos CD8/análise , Linfócitos T CD8-Positivos/imunologia , Receptor 1 de Quimiocina CX3C , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Senescência Celular , Cruzamentos Genéticos , Células Dendríticas/química , Células Dendríticas/imunologia , Feminino , Galactosilceramidas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Tolerância Imunológica/imunologia , Imunofenotipagem , Subunidade p40 da Interleucina-12/biossíntese , Lectinas Tipo C/análise , Lectinas Tipo C/biossíntese , Lectinas Tipo C/genética , Masculino , Lectinas de Ligação a Manose/análise , Lectinas de Ligação a Manose/biossíntese , Lectinas de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose/imunologia , Receptores de Quimiocinas/análise , Proteínas Repressoras/análise , Baço/citologia , Baço/imunologia
12.
Cell Rep ; 5(4): 1047-59, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24268771

RESUMO

To design rational therapies for JAK2-driven hematological malignancies, we functionally dissected the key survival pathways downstream of hyperactive JAK2. In tumors driven by mutant JAK2, Stat1, Stat3, Stat5, and the Pi3k and Mek/Erk pathways were constitutively active, and gene expression profiling of TEL-JAK2 T-ALL cells revealed the upregulation of prosurvival Bcl-2 family genes. Combining the Bcl-2/Bcl-xL inhibitor ABT-737 with JAK2 inhibitors mediated prolonged disease regressions and cures in mice bearing primary human and mouse JAK2 mutant tumors. Moreover, combined targeting of JAK2 and Bcl-2/Bcl-xL was able to circumvent and overcome acquired resistance to single-agent JAK2 inhibitor treatment. Thus, inhibiting the oncogenic JAK2 signaling network at two nodal points, at the initiating stage (JAK2) and the effector stage (Bcl-2/Bcl-xL), is highly effective and provides a clearly superior therapeutic benefit than targeting just one node. Therefore, we have defined a potentially curative treatment for hematological malignancies expressing constitutively active JAK2.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Janus Quinase 2/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteína bcl-X/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Perfilação da Expressão Gênica , Humanos , Janus Quinase 2/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Nitrilas , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Transplante Heterólogo , Proteína bcl-X/genética
13.
Oncoimmunology ; 2(7): e25474, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24073384

RESUMO

The chemokine CCL2, which is best known for its chemotactic functions, is expressed not only by immune cells, but also by several types of malignant and stromal cells. CCL2 has been shown to exert both pro- and anti-tumor effects. However, recent results demonstrate a main role for CCL2 in tumor progression and metastasis, suggesting that this chemokine may constitute a therapeutic target for anticancer drugs. Mammary carcinoma models, including models of implantable, transgenic, and chemically-induced tumors, were employed in the setting of Ccl2 or Ccr2 knockout mice or CCL2 neutralization with a monoclonal antibody to further investigate the role of the CCL2/CCR2 signaling axis in tumor progression and metastatic spread. In our implantable tumor models, an anti-CCL2 monoclonal antibody inhibited the growth of primary malignant lesions in a biphasic manner and reduced the number of metastases. However, in Ccl2-/- or Ccr2-/- mice developing implanted or transgenic tumors, the number of pulmonary metastases was increased despite a reduction in the growth rate of primary neoplasms. Transgenic Mtag.Ccl2-/- or Mtag.Ccr2-/- mice also exhibited a significantly earlier of disease onset. In a chemical carcinogenesis model, anti-CCL2 monoclonal antibody inhibited the growth of established lesions but was ineffective in the tumor induction phase. In contrast to previous studies indicating a role for CCL2 in the establishment of metastases, we have demonstrated that the absence of CCL2/CCR2-signaling results in increased metastatic disease. Thus, the CCL2/CCR2 signaling axis appears to play a dual role in mediating early tumor immunosurveillance and sustaining the growth and progression of established neoplasms. Our findings support the use of anti-CCL2 therapies for the treatment of established breast carcinoma, although the complete abrogation of the CCL2 signaling cascade may also limit immunosurveillance and support metastatic spread.

14.
Chem Res Toxicol ; 26(10): 1514-25, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24028186

RESUMO

Toxicity of commercial nanoparticles of titania, silica, and zinc oxides is being investigated in this in vitro study. Particles of these compositions are found in many food items, and thus this study is directed toward particle behavior in simulated digestion media and their interaction with intestinal epithelial cell line C2BBe1, a clone of Caco-2 cells, originally isolated from a human colon cancer. Even though the primary particle size of all three particles was below 50 nm, the particles appeared as aggregates in culture media with a negatively charged surface. In the presence of pepsin (pH 2), the charge on the titania became positive, and silica was almost neutral and aggregated extensively, whereas ZnO dissolved. For silica and titania, treatment with simulated intestinal digestive solution led to a strongly negatively charged surface and particle sizes approaching values similar to those in media. On the basis of infrared spectroscopy, we concluded that the surface of silica and titania was covered with bile salts/proteins after this treatment. Transmission electron microscopy indicated that the C2BBe1 cells internalized all three particles. Toxicity assays included investigation of necrosis, apoptosis, membrane damage, and mitochondrial activity. Titania and SiO2 particles suspended in media at loading levels of 10 µg/cm² exhibited no toxicity. With ZnO at the same loading level, mild toxicity was observed based only on the LDH assay and decrease of mitochondrial activity and not necrosis or apoptosis. Titania particles exposed to the simulated digestion media exhibited mild toxicity based on decrease of mitochondrial activity, likely due to transport of toxic bile salts via adsorption on the particle surface.


Assuntos
Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Apoptose/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Células CACO-2 , Células Epiteliais/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Intestinos/citologia , L-Lactato Desidrogenase/metabolismo , Nanopartículas Metálicas/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tamanho da Partícula , Pepsina A/metabolismo , Dióxido de Silício/química , Propriedades de Superfície , Fatores de Tempo , Titânio/química , Óxido de Zinco/química
15.
Oncoimmunology ; 2(6): e24462, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23894707

RESUMO

Type I BRAF inhibitors and immunotherapy constitute two new exciting approaches for the treatment of advanced malignant melanoma. We have recently elucidated a role for host C-C chemokine receptor type 2 (CCR2) in the antineoplastic effects of type I BRAF inhibitors in mice, supporting the therapeutic potential of combining BRAF inhibitors with immunotherapy.

16.
J Clin Invest ; 123(3): 1371-81, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23454771

RESUMO

The BRAF mutant, BRAF(V600E), is expressed in nearly half of melanomas, and oral BRAF inhibitors induce substantial tumor regression in patients with BRAF(V600E) metastatic melanoma. The inhibitors are believed to work primarily by inhibiting BRAF(V600E)-induced oncogenic MAPK signaling; however, some patients treated with BRAF inhibitors exhibit increased tumor immune infiltration, suggesting that a combination of BRAF inhibitors and immunotherapy may be beneficial. We used two relatively resistant variants of Braf(V600E)-driven mouse melanoma (SM1 and SM1WT1) and melanoma-prone mice to determine the role of host immunity in type I BRAF inhibitor PLX4720 antitumor activity. We found that PLX4720 treatment downregulated tumor Ccl2 gene expression and decreased tumor CCL2 expression in both Braf(V600E) mouse melanoma transplants and in de novo melanomas in a manner that was coincident with reduced tumor growth. While PLX4720 did not directly increase tumor immunogenicity, analysis of SM1 tumor-infiltrating leukocytes in PLX4720-treated mice demonstrated a robust increase in CD8(+) T/FoxP3(+)CD4(+) T cell ratio and NK cells. Combination therapy with PLX4720 and anti-CCL2 or agonistic anti-CD137 antibodies demonstrated significant antitumor activity in mouse transplant and de novo tumorigenesis models. These data elucidate a role for host CCR2 in the mechanism of action of type I BRAF inhibitors and support the therapeutic potential of combining BRAF inhibitors with immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Antineoplásicos/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Humanos , Imunidade Celular , Imunoterapia , Indóis/administração & dosagem , Masculino , Melanoma/imunologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/genética , Receptores CCR2/metabolismo , Sulfonamidas/administração & dosagem , Linfócitos T Reguladores/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
PLoS One ; 8(1): e54008, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349778

RESUMO

BACKGROUND: The role of viral infections in the pathogenesis of atherosclerosis remains controversial largely due to inconsistent detection of the virus in atherosclerotic lesions. However, viral infections elicit a pro-inflammatory cascade known to be atherogenic and to precipitate acute ischemic events. We have published in vitro data that provide the foundation for a mechanism that reconciles these conflicting observations. To determine the relation between an early viral protein, deoxyuridine triphosphate nucleotidohydrolase (dUTPase), produced following reactivation of Epstein Barr Virus (EBV) to circulating pro-inflammatory cytokines, intercellular adhesion molecule-1 (ICAM-1) and acute coronary events. METHODOLOGY/PRINCIPAL FINDINGS: Blood samples were obtained from 299 patients undergoing percutaneous coronary intervention for stable angina (SA), unstable angina (UA), or acute myocardial infarction (AMI). Plasma concentrations of pro-inflammatory cytokines and neutralizing antibody against EBV-encoded dUTPase were compared in the three patient groups. AMI was associated with the highest measures of interleukin-6 (ANOVA p<0.05; 4.6 ± 2.6 pg/mL in patients with AMI vs. 3.2 ± 2.3 pg/mL in SA). ICAM-1 was significantly higher in patients with AMI (ANOVA p<0.05; 304 ± 116 pg/mL in AMI vs. 265 ± 86 pg/mL SA). The highest values of ICAM-1 were found in patients having an AMI and who were antibody positive for dUTPase (ANOVA p=0.008; 369 ± 183 pg/mL in AMI and positive for dUTPase vs. 249 ± 70 pg/mL in SA negative for dUTPase antibody). CONCLUSIONS/SIGNIFICANCE: These clinical data support a model, based on in vitro studies, by which EBV may precipitate AMI even under conditions of low viral load through the pro-inflammatory action of the early protein dUTPase that is produced even during incomplete viral replication. They further support the putative role of viral infections in the pathogenesis of atherosclerosis and coronary artery events.


Assuntos
Doenças Cardiovasculares/sangue , Infecções por Vírus Epstein-Barr/sangue , Herpesvirus Humano 4/metabolismo , Molécula 1 de Adesão Intercelular/sangue , Pirofosfatases/sangue , Idoso , Análise de Variância , Angina Pectoris/sangue , Angina Pectoris/cirurgia , Angina Pectoris/virologia , Angina Instável/sangue , Angina Instável/cirurgia , Angina Instável/virologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Doenças Cardiovasculares/cirurgia , Doenças Cardiovasculares/virologia , Infecções por Vírus Epstein-Barr/cirurgia , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/cirurgia , Infarto do Miocárdio/virologia , Intervenção Coronária Percutânea , Pirofosfatases/imunologia , Proteínas Virais/sangue , Proteínas Virais/imunologia
18.
J Leukoc Biol ; 92(5): 999-1009, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22941735

RESUMO

We assessed the production of the canonical Th2 cytokine IL-4 by NKT cells directly in vivo using IL-4-substituting strains of reporter mice that provide faithful and sensitive readouts of cytokine production without the confounding effects of in vitro stimulation. Analysis in naïve animals revealed an "innate" phase of IL-4 secretion that did not need to be triggered by administration of a known NKT cell ligand. This secretion was by immature NKT cells spanning Stage 1 of the maturation process in the thymus (CD4(+) CD44(lo) NK1.1(-) cells) and Stage 2 (CD4(+) CD44(hi) NK1.1(-) cells) in the spleen. Like ligand-induced IL-4 production by mature cells, this innate activity was independent of an initial source of IL-4 protein and did not require STAT6 signaling. A more sustained level of innate IL-4 production was observed in animals on a BALB/c background compared with a C57BL/6 background, suggesting a level of genetic regulation that may contribute to the "Th2-prone" phenotype in BALB/c animals. These observations indicate a regulated pattern of IL-4 expression by maturing NKT cells, which may endow these cells with a capacity to influence the development of surrounding cells in the thymus.


Assuntos
Imunidade Inata , Interleucina-4/metabolismo , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Animais , Diferenciação Celular/imunologia , Citometria de Fluxo , Interleucina-4/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Chembiochem ; 13(9): 1349-56, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22639457

RESUMO

The immunomodulatory glycolipid α-galactosylceramide (α-GalCer) binds to CD1d and exhibits potent activity as a ligand for invariant CD1d-restricted natural killer-like T cells (iNKT cells). Structural analogues of α-GalCer have been synthesised to determine which components are required for CD1d presentation and iNKT cell activation, however, to date the importance of the phytosphingosine 4-hydroxyl for iNKT cell activation has been disputed. To clarify this, we synthesised two 4-deoxy α-GalCer analogues (sphinganine and sphingosine) and investigated their ability to activate murine and human iNKT cells. Analysis revealed that the analogues possessed comparable activity to α-GalCer in stimulating murine iNKT cells, but were severely compromised in their ability to stimulate human iNKT cells. Here we determined that species-specific glycolipid activity was due to a lack of recognition of the analogues by the T-cell receptors on human iNKT cells rather than insufficient presentation of the analogues on human CD1d molecules. From these results we suggest that glycolipids developed for potent iNKT cell activity in humans should contain a phytosphingosine base.


Assuntos
Células T Matadoras Naturais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD1d/metabolismo , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Especificidade da Espécie , Esfingosina/síntese química , Esfingosina/química , Esfingosina/metabolismo
20.
Cancer Immunol Immunother ; 61(8): 1255-68, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22270714

RESUMO

Cancer stem cells (CSC) are resistant to radiation and chemotherapy and play a significant role in cancer recurrence and metastatic disease. It is therefore important to identify alternative strategies, such as immunotherapies that can be used to control this refractory population. A CD44(+)CD24(-/low) subpopulation of cells within the B6 PyMT-MMTV transgenic mouse-derived AT-3 mammary carcinoma cell line was identified, which had CSC-like characteristics, including pluripotency and a resistance to chemo- and radiotherapy. Therefore, unlike xenograph models that require immunocompromised settings, this novel system may provide a means to study immune-mediated responses against CSC-like cells. The immunobiology of the AT-3 CSC-like cell population was studied by their surface molecule expression profile and their sensitivity to specified cell death pathways. Comparable levels of Rae-1, CD155, CD54 and higher levels of Fas and DR5 were expressed on the AT-3 CSC-like cells compared to non-CSC-like tumor cells. Expression correlated with an in vitro sensitivity to cell death by NK cells or through the ligation of the death receptors (Fas or DR5), by their ligands or anti-Fas and anti-DR5 mAbs. Indeed, compared to the rest of the AT-3 tumor cells, the CD44(+)CD24(-/low) subpopulation of cells were more sensitive to both Fas- and TRAIL-mediated cell death pathways. Therefore, despite the refractory nature of CSC to other conventional therapies, these CSC-like cells were not inherently resistant to specified forms of immune-mediated cell death. These results encourage the continued investigation into immunotherapeutic strategies as a means of controlling breast CSC, particularly through their cell death pathways.


Assuntos
Morte Celular/fisiologia , Neoplasias Mamárias Experimentais/imunologia , Células-Tronco Neoplásicas/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antígeno CD24/biossíntese , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Citometria de Fluxo , Receptores de Hialuronatos/biossíntese , Imunofenotipagem , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Tolerância a Radiação/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...