Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e11060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384827

RESUMO

Ecological Niche Models (ENMs) are often used to project species distributions within alien ranges and in future climatic scenarios. However, ENMs depend on species-environment equilibrium, which may be absent for actively expanding species. We present a novel framework to estimate whether species have reached environmental equilibrium in their native and alien ranges. The method is based on the estimation of niche breadth with the accumulation of species occurrences. An asymptote will indicate exhaustive knowledge of the realised niches. We demonstrate the CNA framework for 26 species of mammals, amphibians, and birds. Possible outcomes of the framework include: (1) There is enough data to quantify the native and alien realised niches, allowing us to calculate niche expansion between the native and alien ranges, also indicating that ENMs can be reliably projected to new environmental conditions. (2) The data in the native range is not adequate but an asymptote is reached in the alien realised niche, indicating low confidence in our ability to evaluate niche expansion in the alien range but high confidence in model projections to new environmental conditions within the alien range. (3) There is enough data to quantify the native realised niche, but not enough knowledge about the alien realised niche, hindering the reliability of projections beyond sampled conditions. (4) Both the native and alien ranges do not reach an asymptote, and thus few robust conclusions about the species' niche or future projections can be made. Our framework can be used to detect species' environmental equilibrium in both the native and alien ranges, to quantify changes in the realised niche during the invasion processes, and to estimate the likely accuracy of model projections to new environmental conditions.

2.
PLoS One ; 17(3): e0263576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275933

RESUMO

Complex socio-economic, political and demographic factors have driven the increased conversion of Europe's semi-natural grasslands to intensive pastures. This trend is particularly strong in some of the most biodiverse regions of the continent, such as Central and Eastern Europe. Intensive grazing is known to decrease species diversity and alter the composition of plant and insect communities. Comparatively little is known, however, about how intensive grazing influences plant functional traits related to pollination and the structure of plant-pollinator interactions. In traditional hay meadows and intensive pastures in Central Europe, we contrasted the taxonomic and functional group diversity and composition, the structure of plant-pollinator interactions and the roles of individual species in networks. We found mostly lower taxonomic and functional diversity of plants and insects in intensive pastures, as well as strong compositional differences among the two grassland management types. Intensive pastures were dominated by a single plant with a specialized flower structure that is only accessible to a few pollinator groups. As a result, intensive pastures have lower diversity and specificity of interactions, higher amount of resource overlap, more uniform interaction strength and lower network modularity. These findings stand in contrast to studies in which plants with more generalized flower traits dominated pastures. Our results thus highlight the importance of the functional traits of dominant species in mediating the consequences of intensive pasture management on plant-pollinator networks. These findings could further contribute to strategies aimed at mitigating the impact of intensive grazing on plant and pollinator communities.


Assuntos
Pradaria , Polinização , Animais , Flores , Insetos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...