Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 225(2): 394-405, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20589832

RESUMO

Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53.


Assuntos
DNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/metabolismo , Neoplasias Colorretais/metabolismo , Humanos , Camundongos , Mutação , Ligação Proteica , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição de p300-CBP/genética
2.
J Cell Physiol ; 225(2): 371-84, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20458745

RESUMO

The ubiquitin-like molecule, SUMO-1, a small protein essential for a variety of biological processes, is covalently conjugated to many intracellular proteins, especially to regulatory components of the transcriptional machinery, such as histones and transcription factors. Sumoylation provides either a stimulatory or an inhibitory signal for proliferation and for transcription, but the molecular mechanisms by which SUMO-1 achieves such versatility of effects are incompletely defined. The tumor suppressor and transcription regulator p53 is a relevant SUMO-1 target. Particularly, the C-terminal tail of p53 undergoes both sumoylation and acetylation. While the effects of sumoylation are still controversial, acetylation modifies p53 interaction with chromatin embedded promoters, and enforces p53 apoptotic activity. In this study, we show that the N-terminal region of SUMO-1 might functionally mimic this activity of the p53 C-terminal tail. We found that this SUMO-1 domain possesses similarity with the C-terminal acetylable p53 tail as well as with acetylable domains of other transcription factors. SUMO-1 is, indeed, acetylated when conjugated to its substrates and to p53. In the acetylable form SUMO-1 tunes the p53 response by modifying p53 transcriptional program, by promoting binding onto selected promoters and by favoring apoptosis. By contrast, when non-acetylable, SUMO-1 enforces cell-cycle arrest and p53 binding to a different sets of genes. These data demonstrate for the first time that SUMO-1, a post-translational modification is, in turn, modified by acetylation. Further, they imply that the pleiotropy of effects by which SUMO-1 influences various cellular outcomes and the activity of p53 depends upon its acetylation state.


Assuntos
Proteína SUMO-1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Adenocarcinoma/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Camundongos , Camundongos Transgênicos , Conformação Proteica , Estrutura Terciária de Proteína , Proteína SUMO-1/genética , Neoplasias da Glândula Submandibular/metabolismo , Fatores de Transcrição , Proteína Supressora de Tumor p53/genética
3.
EMBO J ; 25(17): 4084-96, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16946709

RESUMO

Axon regeneration is substantially regulated by gene expression and cytoskeleton remodeling. Here we show that the tumor suppressor protein p53 is required for neurite outgrowth in cultured cells including primary neurons as well as for axonal regeneration in mice. These effects are mediated by two newly identified p53 transcriptional targets, the actin-binding protein Coronin 1b and the GTPase Rab13, both of which associate with the cytoskeleton and regulate neurite outgrowth. We also demonstrate that acetylation of lysine 320 (K320) of p53 is specifically involved in the promotion of neurite outgrowth and in the regulation of the expression of Coronin 1b and Rab13. Thus, in addition to its recognized role in neuronal apoptosis, surprisingly, p53 is required for neurite outgrowth and axonal regeneration, likely through a different post-translational pathway. These observations may suggest a novel therapeutic target for promoting regenerative responses following peripheral or central nervous system injuries.


Assuntos
Axônios/fisiologia , Proteínas dos Microfilamentos/metabolismo , Regeneração Nervosa/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Acetilação , Animais , Células Cultivadas , Citoesqueleto/fisiologia , Lisina/metabolismo , Masculino , Camundongos , Neuritos/fisiologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Ratos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
J Cell Biol ; 173(4): 533-44, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16717128

RESUMO

The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate. Acetylation of lysine 320 (K320) prevents phosphorylation of crucial serines in the NH(2)-terminal region of p53; only allows activation of genes containing high-affinity p53 binding sites, such as p21/WAF; and promotes cell survival after DNA damage. In contrast, acetylation of K373 leads to hyperphosphorylation of p53 NH(2)-terminal residues and enhances the interaction with promoters for which p53 possesses low DNA binding affinity, such as those contained in proapoptotic genes, leading to cell death. Further, acetylation of each of these two lysine clusters differentially regulates the interaction of p53 with coactivators and corepressors and produces distinct gene-expression profiles. By analogy with the "histone code" hypothesis, we propose that the multiple biological activities of p53 are orchestrated and deciphered by different "p53 cassettes," each containing combination patterns of posttranslational modifications and protein-protein interactions.


Assuntos
Ciclo Celular/genética , Regulação da Expressão Gênica/genética , Processamento de Proteína Pós-Traducional/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Sequência de Aminoácidos/fisiologia , Apoptose/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Genes cdc/fisiologia , Humanos , Lisina/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/fisiologia , Elementos Reguladores de Transcrição/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/química
5.
J Biol Chem ; 278(52): 52890-900, 2003 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-14555661

RESUMO

Mdm2 gene amplification occurs in benign and chemotherapy-responsive malignant tumors with wtp53 genes as well as in breast and epithelial cancers. Mdm2 amplification in benign tumors suggests that it is not sufficient for p53 inactivation in cancer, implying that other defects in the p53 pathway are required for malignancy. We investigated mechanisms of wtp53 protein inactivation in malignant conversion of epithelial cells by comparing clonally related initiated cells with their derivative cancerous cells that have mdm2 amplification. Deficiencies in p53 accumulation and activities in response to DNA damage were not due simply to Mdm2 destabilization of p53 protein, but to continued association of DNA-bound p53 with Mdm2 protein and lack of binding and acetylation by p300 protein. The aberrant interactions were not because of mdm2 amplification alone, because DNA-bound p53 protein from initiated cells failed to bind ectopically expressed Mdm2 or endogenous overexpressed Mdm2 from cancerous cells. Phosphorylations of endogenous p53 at Ser18, -23, or -37 were insufficient to dissociate Mdm2, because each was induced by UV in cancerous cells. Interestingly, phospho-mimic p53-T21E did dissociate the Mdm2 protein from DNA-bound p53 and recovered p300 binding and p21 induction in the cancerous cells. Thus wtp53 in malignant cells with mdm2 amplification can be inactivated by continued association of DNA-bound p53 protein with Mdm2 and failure of p300 binding and acetylation, coupled with a defect in p53 phosphorylation at Thr21. These findings suggest therapeutic strategies that address both p53/Mdm2 interaction and associated p53 protein defects in human tumors that have amplified mdm2 genes.


Assuntos
Células Epiteliais/metabolismo , Genes p53 , Proteínas Nucleares , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/química , Acetiltransferases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Neoplásica , DNA/metabolismo , Dano ao DNA , DNA Complementar/metabolismo , Relação Dose-Resposta à Radiação , Citometria de Fluxo , Amplificação de Genes , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico HSP70/metabolismo , Histona Acetiltransferases , Humanos , Immunoblotting , Proteínas Luminescentes/metabolismo , Camundongos , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Treonina/química , Fatores de Tempo , Fatores de Transcrição , Ativação Transcricional , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta , Fatores de Transcrição de p300-CBP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...