Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(41): 8344-8352, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37800999

RESUMO

Small molecule heterobifunctional degraders (commonly also known as PROTACs) offer tremendous potential to deliver new therapeutics in areas of unmet medical need. To deliver on this promise, a new discipline directed at degrader design and optimization has emerged within medicinal chemistry to address a central challenge, namely how to optimize relatively large, heterobifunctional molecules for activity, whilst maintaining drug-like properties. This process involves simultaneous optimization of the three principle degrader components: E3 ubiquitin ligase ligand, linker, and protein of interest (POI) ligand. A substantial degree of commonality exists with the E3 ligase ligands typically used at the early stages of degrader development, resulting in demand for these compounds as chemical building blocks in degrader research programs. We describe herein a collation of large scale, high-yielding syntheses to access the most utilized E3 ligase ligands to support early-stage degrader development.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Ligantes , Proteínas/metabolismo
2.
Oncogenesis ; 10(10): 68, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642317

RESUMO

CIC-DUX4 sarcoma (CDS) is a highly aggressive and metastatic small round type of predominantly pediatric sarcoma driven by a fusion oncoprotein comprising the transcriptional repressor Capicua (CIC) fused to the C-terminal transcriptional activation domain of DUX4. CDS rapidly develops resistance to chemotherapy, thus novel specific therapies are greatly needed. We demonstrate that CIC-DUX4 requires P300/CBP to induce histone H3 acetylation, activate its targets, and drive oncogenesis. We describe the synthetic route to a selective and highly potent P300/CBP inhibitor named iP300w and related stereoisomers, and find that iP300w efficiently suppresses CIC-DUX4 transcriptional activity and reverses CIC-DUX4 induced acetylation. iP300w is active at 100-fold lower concentrations than related stereoisomers or A-485. At low doses, iP300w shows specificity to CDS cancer cell lines, rapidly inducing cell cycle arrest and preventing growth of established CDS xenograft tumors when delivered in vivo. The effectiveness of iP300w to inactivate CIC-DUX4 highlights a promising therapeutic opportunity for CDS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...