Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 867: 161209, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581264

RESUMO

Global changes, including climate and land use changes, can result in significant impact to water resources. Planning for these changes requires making projections, even in the face of considerable uncertainties, to make informed management and policy decisions. A number of climate change scenarios and projections at global and regional levels are available that can be used to predict the likely range of outcomes. However, there is a need to translate these projections into potential implications for hydrology and water quality. Since there are dozens of hydrologic models, there is a need to evaluate them critically and to develop guidance regarding selecting the appropriate model for a given objective. We conducted a review of 21 different models commonly used for modeling hydrology (8), water quality (6) or both (7) at the watershed scale. Six of the models are strictly water quality models that depend on a separate model or observed data for hydrology. Seven additional models are useful for estimating hydrology and water quality simultaneously. The models were then evaluated based on ten different criteria, including functionality, scope, ability to model extreme events, data requirements, availability, and technical support, among others. The models were ranked Low, Medium or High in each of the criteria. The results indicate that three hydrologic models, MIKE-SHE, HEC-HMS, and MODHMS, as well as two full hydrology and water quality models, SWAT and WARMF, stand out in terms of functionality, availability, applicability to a wide range of watersheds and scales, ease of implementation, and availability of support. Modelers should carefully select the best model for their application, in part guided by the criteria discussed herein.

2.
Nat Commun ; 13(1): 6693, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335099

RESUMO

Adopting electric end-use technologies instead of fossil-fueled alternatives, known as electrification, is an important economy-wide decarbonization strategy that also reduces criteria pollutant emissions and improves air quality. In this study, we evaluate CO2 and air quality co-benefits of electrification scenarios by linking a detailed energy systems model and a full-form photochemical air quality model in the United States. We find that electrification can substantially lower CO2 and improve air quality and that decarbonization policy can amplify these trends, which yield immediate and localized benefits. In particular, transport electrification can improve ozone and fine particulate matter (PM2.5), though the magnitude of changes varies regionally. However, growing activity from non-energy-related PM2.5 sources-such as fugitive dust and agricultural emissions-can offset electrification benefits, suggesting that additional measures beyond CO2 policy and electrification are needed to meet air quality goals. We illustrate how commonly used marginal emissions approaches systematically underestimate reductions from electrification.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Estados Unidos , Poluentes Atmosféricos/análise , Dióxido de Carbono , Poluição do Ar/análise , Material Particulado/análise , Ozônio/análise
3.
J Air Waste Manag Assoc ; 72(9): 1040-1052, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35748780

RESUMO

Advanced dispersion models such as AERMOD specifically address the portion of a plume emitted in convective conditions that is sufficiently buoyant to rise into the stable layer above the elevated inversion. This portion of the plume mass is often referred to as the "penetrated plume" because that plume component breaks through the elevated inversion and penetrates into the stable layer aloft. A premature mixing of the penetrated plume to the ground has been identified in the current formulation of AERMOD, which is the U.S. EPA-preferred short-range dispersion model and used in several other countries. This behavior has been observed based on data from field studies where the model is found to overpredict ground-level concentration events due to the penetrated plume component, with the timing of these peak predictions too early in the day. A proposed update to AERMOD to address the penetrated plume issue (referred to as "HBP" for modifications particularly important for "highly buoyant plume") is documented and evaluated in this manuscript. The revised approach involves a check on the convective mixing height for the current hour as well as the next hour to determine how much of the penetrated plume has been captured by the convective boundary layer by the end of the current hour. The amount of the penetrated plume mass that is allowed to mix to the ground in the HBP modifications depends upon the result of this calculation. The HBP modification has been evaluated as an update to AERMOD for three databases along with a sensitivity analysis of the effects of the HBP changes on a variety of stack heights and buoyancy fluxes. The findings of the evaluation indicate that the HBP changes to AERMOD result in reduced overprediction tendencies.Implications: A proposed enhancement to AERMOD to address a premature mixing of penetrated plume material to the ground has been performed by implemented and evaluated by the authors. The enhancement, referred to as the highly buoyant plume (HBP) is based on work developed by Jeffrey Weil. HBP is designed to better characterize the penetrated plume behavior in the model such that it aligns more closely with observations based on data from field studies.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Bases de Dados Factuais
4.
Environ Sci Technol ; 53(15): 8682-8694, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31335134

RESUMO

Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulfinorg), as determined by laboratory measurements. Characterization of the total sulfur aerosol observed at Look Rock, Tennessee, from 2007 to 2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulfinorg, consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modify critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX/Sulfinorg will play an important role in understanding the historical climate and determining future impacts of biogenic SOA on the global climate and air quality.


Assuntos
Atmosfera , Pentanos , Aerossóis , Butadienos , Hemiterpenos , Sulfatos , Tennessee
5.
Environ Sci Technol ; 51(5): 2830-2837, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28221773

RESUMO

U.S.-wide air quality impacts of electrifying vehicles and off-road equipment are estimated for 2030 using 3-D photochemical air quality model and detailed emissions inventories. Electrification reduces tailpipe emissions and emissions from petroleum refining, transport, and storage, but increases electricity demand. The Electrification Case assumes approximately 17% of light duty and 8% of heavy duty vehicle miles traveled and from 17% to 79% of various off-road equipment types considered good candidates for electrification is powered by electricity. The Electrification Case raises electricity demand by 5% over the 2030 Base Case but nitrogen oxide (NOx) emissions decrease by 209 thousand tons (3%) overall. Emissions of other criteria pollutants also decrease. Air quality benefits of electrification are modest, mostly less than 1 ppb for ozone and 0.5 µg m-3 for fine particulate matter (PM2.5), but widespread. The largest reductions for ozone and PM occur in urban areas due to lower mobile source emissions. Electrifying off-road equipment yields more benefits than electrifying on-road vehicles. Reduced crude oil imports and associated marine vessel emissions cause additional benefits in port cities. Changes in other gas and PM emissions, as well as impacts on acid and nutrient deposition, are discussed.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Monitoramento Ambiental , Veículos Automotores , Ozônio , Material Particulado , Estados Unidos
6.
J Air Waste Manag Assoc ; 66(8): 795-806, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27191342

RESUMO

UNLABELLED: The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). IMPLICATIONS: Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on a localized scale. In particular, natural gas turbines typically used in distributed generation may have minor effects. Large banks of diesel backup generators such as those used by data centers, on the other hand, may require pollution controls or conversion to natural gas-fired reciprocal internal combustion engines to decrease nitrogen dioxide pollution.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Modelos Teóricos , Centrais Elétricas , Movimentos do Ar , Monóxido de Carbono/análise , Monitoramento Ambiental , Gás Natural/análise , Dióxido de Nitrogênio , Ozônio/análise , Material Particulado/análise , Energia Renovável , Emissões de Veículos/análise
7.
J Air Waste Manag Assoc ; 65(11): 1341-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26302223

RESUMO

UNLABELLED: The performance of the AERMOD air dispersion model under low wind speed conditions, especially for applications with only one level of meteorological data and no direct turbulence measurements or vertical temperature gradient observations, is the focus of this study. The analysis documented in this paper addresses evaluations for low wind conditions involving tall stack releases for which multiple years of concurrent emissions, meteorological data, and monitoring data are available. AERMOD was tested on two field-study databases involving several SO2 monitors and hourly emissions data that had sub-hourly meteorological data (e.g., 10-min averages) available using several technical options: default mode, with various low wind speed beta options, and using the available sub-hourly meteorological data. These field study databases included (1) Mercer County, a North Dakota database featuring five SO2 monitors within 10 km of the Dakota Gasification Company's plant and the Antelope Valley Station power plant in an area of both flat and elevated terrain, and (2) a flat-terrain setting database with four SO2 monitors within 6 km of the Gibson Generating Station in southwest Indiana. Both sites featured regionally representative 10-m meteorological databases, with no significant terrain obstacles between the meteorological site and the emission sources. The low wind beta options show improvement in model performance helping to reduce some of the over-prediction biases currently present in AERMOD when run with regulatory default options. The overall findings with the low wind speed testing on these tall stack field-study databases indicate that AERMOD low wind speed options have a minor effect for flat terrain locations, but can have a significant effect for elevated terrain locations. The performance of AERMOD using low wind speed options leads to improved consistency of meteorological conditions associated with the highest observed and predicted concentration events. The available sub-hourly modeling results using the Sub-Hourly AERMOD Run Procedure (SHARP) are relatively unbiased and show that this alternative approach should be seriously considered to address situations dominated by low-wind meander conditions. IMPLICATIONS: AERMOD was evaluated with two tall stack databases (in North Dakota and Indiana) in areas of both flat and elevated terrain. AERMOD cases included the regulatory default mode, low wind speed beta options, and use of the Sub-Hourly AERMOD Run Procedure (SHARP). The low wind beta options show improvement in model performance (especially in higher terrain areas), helping to reduce some of the over-prediction biases currently present in regulatory default AERMOD. The SHARP results are relatively unbiased and show that this approach should be seriously considered to address situations dominated by low-wind meander conditions.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Centrais Elétricas , Dióxido de Enxofre/análise , Vento , Bases de Dados Factuais , Indiana , North Dakota
8.
Environ Sci Technol ; 49(11): 7012-20, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25897974

RESUMO

Limited direct measurements of criteria pollutants emissions and precursors, as well as natural gas constituents, from Marcellus shale gas development activities contribute to uncertainty about their atmospheric impact. Real-time measurements were made with the Aerodyne Research Inc. Mobile Laboratory to characterize emission rates of atmospheric pollutants. Sites investigated include production well pads, a well pad with a drill rig, a well completion, and compressor stations. Tracer release ratio methods were used to estimate emission rates. A first-order correction factor was developed to account for errors introduced by fenceline tracer release. In contrast to observations from other shale plays, elevated volatile organic compounds, other than CH4 and C2H6, were generally not observed at the investigated sites. Elevated submicrometer particle mass concentrations were also generally not observed. Emission rates from compressor stations ranged from 0.006 to 0.162 tons per day (tpd) for NOx, 0.029 to 0.426 tpd for CO, and 67.9 to 371 tpd for CO2. CH4 and C2H6 emission rates from compressor stations ranged from 0.411 to 4.936 tpd and 0.023 to 0.062 tpd, respectively. Although limited in sample size, this study provides emission rate estimates for some processes in a newly developed natural gas resource and contributes valuable comparisons to other shale gas studies.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Sedimentos Geológicos/química , Gás Natural/análise , Monóxido de Carbono/análise , Íons , Limite de Detecção , Espectrometria de Massas , Metano/análise , Óxido Nitroso/análise , Pennsylvania , Fatores de Tempo , Compostos Orgânicos Voláteis/análise
9.
Environ Sci Technol ; 48(18): 10821-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25167095

RESUMO

Carbon dioxide (CO2) absorption with aqueous amine solvents is a method of carbon capture and sequestration (CCS) from flue gases. One concern is the possible release of amine solvents and degradation products into the atmosphere, warranting evaluation of potential pulmonary effects from inhalation. The CCS amines monoethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP) underwent oxidative and CO2-mediated degradation for 75 days. C57bl/6N mice were exposed for 7 days by inhalation of 25 ppm neat amine or equivalant concentration in the degraded mixture. The aqueous solutions were nebulized to create the inhalation atmospheres. Pulmonary response was measured by changes in inflammatory cells in bronchoalveolar lavage fluid and cytokine expression in lung tissue. Ames mutagenicity and CHO-K1 micronucleus assays were applied to assess genotoxicity. Chemical analysis of the test atmosphere and liquid revealed complex mixtures, including acids, aldehydes, and other compounds. Exposure to oxidatively degraded MEA increased (p < 0.05) total cells, neutrophils, and lymphocytes compared to control mice and caused inflammatory cytokine expression (statistical increase at p < 0.05). MEA and CO2-degraded MEA were the only atmospheres to show statistical (p < 0.05) increase in oxidative stress. CO2 degradation resulted in a different composition, less degradation, and lower observed toxicity (less magnitude and number of effects) with no genotoxicity. Overall, oxidative degradation of the amines studied resulted in enhanced toxicity (increased magnitude and number of effects) compared to the neat chemicals.


Assuntos
Aminas/toxicidade , Sequestro de Carbono , Carbono/análise , Solventes/toxicidade , Testes de Toxicidade , Administração por Inalação , Aminas/química , Animais , Cromatografia Líquida , Etanolamina/química , Etanolamina/toxicidade , Pulmão/metabolismo , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
10.
J Air Waste Manag Assoc ; 64(4): 453-67, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24843916

RESUMO

UNLABELLED: The Community Multiscale Air Quality (CMAQ) modeling system Version 5.0 (CMAQv5.0) was released by the US. Environmental Protection Agency (EPA) in February 2012, with an interim release (v5.01) in July 2012. Because CMAQ is a community model, the EPA encourages the development of proven alternative science treatments by external scientists and developers that can be incorporated as part of an official CMAQ release. This paper describes the implementation, evaluation, and testing of a plume-in-grid (PinG) module in CMAQ 5.01. The PinG module, also referred to as Advanced Plume Treatment (APT), provides the capability of resolving sub-grid-scale processes, such as the transport and chemistry of point-source plumes, in a grid model. The new PinG module in CMAQ 5.01 is applied and evaluated for two 15-day summer and winter periods in 2005 to the eastern United States, and the results are compared with those from the base CMAQ 5.01. Eighteen large point sources of NO(x) in the eastern United States were selected for explicit plume treatment with APT in the PinG simulation. The results show that overall model performance is negligibly affected when PinG treatment is included. However the PinG model predicts significantly different contributions of the 18 sources to pollutant concentrations and deposition downwind of the point sources compared to the base model. IMPLICATIONS: This study describes the incorporation of a plume-in-grid (PinG) capability within the latest version of the EPA grid model, CMAQ. The capability addresses the inherent limitation of the grid model to resolve processes, such as the evolution of point-source plumes, which occur at scales much smaller than the grid resolution. The base grid model and the PinG version predict different source contributions to ozone and PM2.5 concentrations that need to be considered when source attribution studies are conducted to determine the impacts of large point sources on downwind concentrations and deposition of primary and secondary pollutants.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Ozônio/análise , Material Particulado/análise , Atmosfera/química , Estações do Ano , Estados Unidos , United States Environmental Protection Agency
11.
J Air Waste Manag Assoc ; 64(12): 1390-402, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25562935

RESUMO

Emissions of pollutants such as SO2 and NOx from external combustion sources can vary widely depending on fuel sulfur content, load, and transient conditions such as startup, shutdown, and maintenance/malfunction. While monitoring will automatically reflect variability from both emissions and meteorological influences, dispersion modeling has been typically conducted with a single constant peak emission rate. To respond to the need to account for emissions variability in addressing probabilistic 1-hr ambient air quality standards for SO2 and NO2, we have developed a statistical technique, the Emissions Variability Processor (EMVAP), which can account for emissions variability in dispersion modeling through Monte Carlo sampling from a specified frequency distribution of emission rates. Based upon initial AERMOD modeling of from 1 to 5 years of actual meteorological conditions, EMVAP is used as a postprocessor to AERMOD to simulate hundreds or even thousands of years of concentration predictions. This procedure uses emissions varied hourly with a Monte Carlo sampling process that is based upon the user-specified emissions distribution, from which a probabilistic estimate can be obtained of the controlling concentration. EMVAP can also accommodate an advanced Tier 2 NO2 modeling technique that uses a varying ambient ratio method approach to determine the fraction of total oxides of nitrogen that are in the form of nitrogen dioxide. For the case of the 1-hr National Ambient Air Quality Standards (NAAQS, established for SO2 and NO2), a "critical value" can be defined as the highest hourly emission rate that would be simulated to satisfy the standard using air dispersion models assuming constant emissions throughout the simulation. The critical value can be used as the starting point for a procedure like EMVAP that evaluates the impact of emissions variability and uses this information to determine an appropriate value to use for a longer-term (e.g., 30-day) average emission rate that would still provide protection for the NAAQS under consideration. This paper reports on the design of EMVAP and its evaluation on several field databases that demonstrate that EMVAP produces a suitably modest overestimation of design concentrations. We also provide an example of an EMVAP application that involves a case in which a new emission limitation needs to be considered for a hypothetical emission unit that has infrequent higher-than-normal SO2 emissions. Implications: Emissions of pollutants from combustion sources can vary widely depending on fuel sulfur content, load, and transient conditions such as startup and shutdown. While monitoring will automatically reflect this variability on measured concentrations, dispersion modeling is typically conducted with a single peak emission rate assumed to occur continuously. To realistically account for emissions variability in addressing probabilistic 1-hr ambient air quality standards for SO2 and NO2, the authors have developed a statistical technique, the Emissions Variability Processor (EMVAP), which can account for emissions variability in dispersion modeling through Monte Carlo sampling from a specified frequency distribution of emission rates.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Dióxido de Nitrogênio/análise , Dióxido de Enxofre/análise , Modelos Teóricos , Método de Monte Carlo , Fatores de Tempo
12.
Inhal Toxicol ; 25(6): 309-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742109

RESUMO

To investigate the toxicological effects of biogenic- versus anthropogenic-source secondary organic aerosol (SOA) on the cardiovascular system, the Secondary Particulate Health Effects Research program irradiation chamber was used to expose atherosclerotic apolipoprotein E null (Apo E-/-) mice to SOA from the oxidation of either α-pinene or toluene for 7 days. SOA atmospheres were produced to yield 250-300 µg/m(3) of particulate matter and ratios of 10:1:1 α-pinene:nitrogen oxide (NOx):ammonia (NH3); 10:1:1:1 α-pinene:NOx:NH3:sulfur dioxide (SO2) or 10:1:1 toluene:NOx:NH3; and 10:1:1:1 toluene:NOx:NH3:SO2. Resulting effects on the cardiovascular system were assessed by measurement of vascular lipid peroxidation (thiobarbituric acid reactive substance (TBARS)), as well as quantification of heme-oxygenase (HO)-1, endothelin (ET)-1, and matrix metalloproteinase (MMP)-9 mRNA expression for comparison to previous program exposure results. Consistent with similar previous studies, vascular TBARS were not increased significantly with any acute SOA exposure. However, vascular HO-1, MMP-9, and ET-1 observed in Apo E-/- mice exposed to α-pinene + NOx + NH3 + SO2 increased statistically, while α-pinene + NOx + NH3 exposure to either toluene + NOx + NH3 or toluene +NOx + NH3 + SO2 resulted in a decreased expression of these vascular factors. Such findings suggest that the specific chemistry created by the presence or absence of acidic components may be important in SOA-mediated toxicity in the cardiovascular system and/or progression of cardiovascular disease.


Assuntos
Amônia/administração & dosagem , Doenças Cardiovasculares/metabolismo , Monoterpenos/administração & dosagem , Óxido Nítrico/administração & dosagem , Compostos Orgânicos/análise , Tolueno/administração & dosagem , Administração por Inalação , Aerossóis , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Monoterpenos Bicíclicos , Biomarcadores/metabolismo , Endotelina-1/genética , Heme Oxigenase-1/genética , Masculino , Metaloproteinase 9 da Matriz/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
13.
Environ Sci Technol ; 47(11): 5686-94, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23638946

RESUMO

Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Butadienos/química , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Compostos de Epóxi/química , Hemiterpenos/química , Pentanos/química , Poluentes Atmosféricos/química , Atmosfera , Monoterpenos Bicíclicos , Cidades , Georgia , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Monoterpenos/química , Padrões de Referência , Estações do Ano
14.
Inhal Toxicol ; 24(11): 689-97, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22954394

RESUMO

The biological response to inhalation of secondary organic aerosol (SOA) was determined in rodents exposed to SOA derived from the oxidation of toluene, a precursor emitted from anthropogenic sources. SOA atmospheres were produced to yield 300 µg·m(-3) of particulate matter (PM) plus accompanying gases. Whole-body exposures were conducted in mice to assess both pulmonary and cardiovascular effects. ApoE(-/-) mice were exposed for 7 days and measurements of TBARS and gene expression of heme-oxygenase-1 (HO-1), endothelin-1 (ET-1), and matrix metalloproteinase-9 (MMP-9) were made in aorta. Pulmonary inflammatory responses in both species were measured by bronchoalveolar lavage fluid (BALF) cell counts. No pulmonary inflammation was observed. A mild response was observed in mouse aorta for the upregulation of ET-1 and HO-1, with a trend for increased MMP-9 and TBARS, and. Overall, toluene-derived SOA revealed limited biological response compared with previous studies using this exposure protocol with other environmental pollutants.


Assuntos
Aerossóis/química , Aerossóis/toxicidade , Poluentes Atmosféricos/toxicidade , Tolueno/química , Tolueno/toxicidade , Poluentes Atmosféricos/química , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Câmaras de Exposição Atmosférica , Gases , Regulação da Expressão Gênica , Exposição por Inalação , Masculino , Camundongos , Camundongos Knockout , Estrutura Molecular , Oxirredução
15.
Environ Sci Technol ; 46(1): 250-8, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22103348

RESUMO

Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NO(x) conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (>99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7-6.4% for ß-IEPOX and 3.4-5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C(5)-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NO(x), isoprene-dominated regions influenced by the presence of acidic aerosols.


Assuntos
Ácidos/química , Aerossóis/síntese química , Butadienos/química , Compostos de Epóxi/química , Hemiterpenos/química , Pentanos/química , Aerossóis/química , Atmosfera/química , Catálise , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos/química , Tamanho da Partícula , Material Particulado/química , Padrões de Referência
16.
J Air Waste Manag Assoc ; 61(6): 660-72, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21751582

RESUMO

The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To alleviate problems due to selection of a backward-trajectory starting level within a large complex set of 3-dimensional winds, turbulence, and dispersion, results were averaged from all heights, which yielded uniform improvement against all individual cases.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Processos Estocásticos , Movimentos do Ar , Poluição do Ar , Modelos Teóricos , Estados Unidos
17.
Environ Sci Technol ; 44(12): 4590-6, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20476767

RESUMO

Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C(5)-alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from approximately 1 to 24 ng m(-3) in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO(x) conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region.


Assuntos
Aerossóis/análise , Butadienos/análise , Compostos de Epóxi/análise , Hemiterpenos/análise , Pentanos/análise , Aerossóis/química , Atmosfera/química , Butadienos/química , Compostos de Epóxi/química , Cromatografia Gasosa-Espectrometria de Massas , Gases/química , Hemiterpenos/química , Material Particulado/análise , Pentanos/química , Sudeste dos Estados Unidos
18.
J Air Waste Manag Assoc ; 60(3): 287-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20397558

RESUMO

The contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3). In such instances, the individual effects of NOx and SO2 controls on nitrogen deposition can be approximated by the effects of combined NOx + SO2 controls on the deposition of NOy, (the sum of oxidized nitrogen species) and reduced nitrogen species (NHx), respectively. The benefit of controls at the plant in terms of the decrease in nitrogen deposition to Escambia Bay and watershed is less than 6% of the overall benefit due to regional Clean Air Interstate Rule (CAIR) controls.


Assuntos
Poluentes Atmosféricos/análise , Resíduos Industriais/prevenção & controle , Óxidos de Nitrogênio/análise , Nitrogênio/análise , Dióxido de Enxofre/análise , Poluição da Água/prevenção & controle , Florida , Resíduos Industriais/análise , Modelos Químicos , Centrais Elétricas
19.
Environ Health Perspect ; 118(7): 921-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20197249

RESUMO

BACKGROUND: Emerging evidence suggests that the systemic vasculature may be a target of inhaled pollutants of vehicular origin. We have identified several murine markers of vascular toxicity that appear sensitive to inhalation exposures to combustion emissions. OBJECTIVE: We sought to examine the relative impact of various pollutant atmospheres and specific individual components on these markers of altered vascular transcription and lipid peroxidation. METHODS: Apolipoprotein E knockout (ApoE(-/-)) mice were exposed to whole combustion emissions (gasoline, diesel, coal, hardwood), biogenically derived secondary organic aerosols (SOAs), or prominent combustion-source gases [nitric oxide (NO), NO(2), carbon monoxide (CO)] for 6 hr/day for 7 days. Aortas were assayed for transcriptional alterations of endothelin-1 (ET-1), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-2 (TIMP-2), and heme oxygenase-1 (HO-1), along with measures of vascular lipid peroxides (LPOs) and gelatinase activity. RESULTS: We noted transcriptional alterations with exposures to gasoline and diesel emissions. Interestingly, ET-1 and MMP-9 transcriptional effects could be recreated by exposure to CO and NO, but not NO(2) or SOAs. Gelatinase activity aligned with levels of volatile hydrocarbons and also monoxide gases. Neither gases nor particles induced vascular LPO despite potent effects from whole vehicular emissions. CONCLUSIONS: In this head-to-head comparison of the effects of several pollutants and pollutant mixtures, we found an important contribution to vascular toxicity from readily bioavailable monoxide gases and possibly from volatile hydrocarbons. These data support a role for traffic-related pollutants in driving cardiopulmonary morbidity and mortality.


Assuntos
Poluentes Atmosféricos/toxicidade , Vasos Sanguíneos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Emissões de Veículos/toxicidade , Análise de Variância , Animais , Apolipoproteínas E/genética , Monóxido de Carbono/toxicidade , Endotelina-1/metabolismo , Heme Oxigenase-1/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/toxicidade , Reação em Cadeia da Polimerase , Substâncias Reativas com Ácido Tiobarbitúrico , Inibidor Tecidual de Metaloproteinase-2/metabolismo
20.
Inhal Toxicol ; 22(3): 253-65, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20148748

RESUMO

An irradiation chamber designed for reproducible generation of inhalation test atmospheres of secondary organic aerosol (SOA) was used to evaluate cardiopulmonary responses in rodents exposed to SOA derived from the oxidation of alpha-pinene. SOA atmospheres were produced with 10:1 ratios of alpha-pinene:nitrogen oxides (NO(x)) and 10:1:1 ratios of alpha-pinene:nitrogen oxides:sulfur dioxide (SO(2)). SOA atmospheres were produced to yield 200 microg m(-3) of particulate matter (PM). Exposures were conducted downstream of honeycomb denuders employed to remove the gas-phase precursors and reaction products. Nose-only exposures were conducted with both rats (pulmonary effects) and mice (pulmonary and cardiovascular effects). Composition of the atmospheres was optimized to ensure that the SOA generated resembled SOA observed in previous irradiation studies, and contained specific SOA compounds of interest (e.g., organosulfates) identified in ambient air. Pulmonary and cardiovascular toxicity were measured in two different rodent species. In situ chemiluminescence and thiobarbituric acid- reactive substances (TBARS) were used to evaluate oxidative reactions in the F344 rats. ApoE(-/-) mice were exposed for 7 days and measurements of TBARS and gene expression of heme oxygenase-1 (HO-1), endothelin-1 (ET-1), matrix metalloproteinase-9 (MMP-9) were made in aorta. Pulmonary inflammatory responses in both species were measured by bronchoalveolar lavage fluid (BALF) cell counts. No pulmonary inflammation was observed in either species. A mild response was observed in mouse aorta for the upregulation of HO-1 and MMP-9, but was not seen for ET-1. Overall, alpha-pinene-derived SOA, including SOA that included organosulfate compounds, revealed limited biological response after short-term inhalation exposures.


Assuntos
Aerossóis , Coração/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Compostos Orgânicos/toxicidade , Poluentes Atmosféricos/toxicidade , Poluição do Ar/prevenção & controle , Animais , Apolipoproteínas E/genética , Câmaras de Exposição Atmosférica , Monitoramento Ambiental , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/patologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Dióxido de Enxofre/administração & dosagem , Dióxido de Enxofre/toxicidade , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...