Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 34(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38787315

RESUMO

Rogue waves are an intriguing nonlinear phenomenon arising across different scales, ranging from ocean waves through optics to Bose-Einstein condensates. We describe the emergence of rogue wave-like dynamics in a reaction-diffusion system that arise as a result of a subcritical Turing instability. This state is present in a regime where all time-independent states are unstable and consists of intermittent excitation of spatially localized spikes, followed by collapse to an unstable state and subsequent regrowth. We characterize the spatiotemporal organization of spikes and show that in sufficiently large domains the dynamics are consistent with a memoryless process.

2.
Phys Rev E ; 109(4-1): 044210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755931

RESUMO

This work analyzes bifurcation delay and front propagation in the one-dimensional real Ginzburg-Landau equation with periodic boundary conditions on isotropically growing or shrinking domains. First, we obtain closed-form expressions for the delay of primary bifurcations on a growing domain and show that the additional domain growth before the appearance of a pattern is independent of the growth time scale. We also quantify primary bifurcation delay on a shrinking domain; in contrast with a growing domain, the time scale of domain compression is reflected in the additional compression before the pattern decays. For secondary bifurcations such as the Eckhaus instability, we obtain a lower bound on the delay of phase slips due to a time-dependent domain. We also construct a heuristic model to classify regimes with arrested phase slips, i.e., phase slips that fail to develop. Then, we study how propagating fronts are influenced by a time-dependent domain. We identify three types of pulled fronts: homogeneous, pattern spreading, and Eckhaus fronts. By following the linear dynamics, we derive expressions for the velocity and profile of homogeneous fronts on a time-dependent domain. We also derive the natural "asymptotic" velocity and front profile and show that these deviate from predictions based on the marginal stability criterion familiar from fixed domain theory. This difference arises because the time dependence of the domain lifts the degeneracy of the spatial eigenvalues associated with speed selection and represents a fundamental distinction from the fixed domain theory that we verify using direct numerical simulations. The effect of a growing domain on pattern spreading and Eckhaus front velocities is inspected qualitatively and found to be similar to that of homogeneous fronts. These more complex fronts can also experience delayed onset. Lastly, we show that dilution-an effect present when the order parameter is conserved-increases bifurcation delay and amplifies changes in the homogeneous front velocity on time-dependent domains. The study provides general insight into the effects of domain growth on pattern onset, pattern transitions, and front propagation in systems across different scientific fields.

3.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629791

RESUMO

Numerical continuation is used to compute solution branches in a two-component reaction-diffusion model of Leslie-Gower type. Two regimes are studied in detail. In the first, the homogeneous state loses stability to supercritical spatially uniform oscillations, followed by a subcritical steady state bifurcation of Turing type. The latter leads to spatially localized states embedded in an oscillating background that bifurcate from snaking branches of localized steady states. Using two-parameter continuation, we uncover a novel mechanism whereby disconnected segments of oscillatory states zip up into a continuous snaking branch of time-periodic localized states, some of which are stable. In the second, the homogeneous state loses stability to supercritical Turing patterns, but steady spatially localized states embedded either in the homogeneous state or in a small amplitude Turing state are nevertheless present. We show that such behavior is possible when sideband Turing states are strongly subcritical and explain why this is so in the present model. In both cases, the observed behavior differs significantly from that expected on the basis of a supercritical primary bifurcation.

4.
Phys Rev E ; 109(1-1): 014216, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366532

RESUMO

We present a detailed mathematical study of a truncated normal form relevant to the bifurcations observed in wake flow past axisymmetric bodies, with and without thermal stratification. We employ abstract normal form analysis to identify possible bifurcations and the corresponding bifurcation diagrams in parameter space. The bifurcations and the bifurcation diagrams are interpreted in terms of symmetry considerations. Particular emphasis is placed on the presence of attracting robust heteroclinic cycles in certain parameter regimes. The normal form coefficients are computed for several examples of wake flows behind buoyant disks and spheres, and the resulting predictions compared with the results of direct numerical flow simulations. In general, satisfactory agreement is obtained.

5.
Phys Rev E ; 107(6-1): 064210, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464596

RESUMO

We demonstrate that several nonvariational continuum models commonly used to describe active matter as well as other active systems exhibit nongeneric behavior: each model supports asymmetric but stationary localized states even in the absence of pinning at heterogeneities. Moreover, such states only begin to drift following a drift-transcritical bifurcation as the activity increases. Asymmetric stationary states should only exist in variational systems, i.e., in models with gradient structure. In other words, such states are expected in passive systems, but not in active systems where the gradient structure of the model is broken by activity. We identify a "spurious" gradient dynamics structure of these models that is responsible for this nongeneric behavior, and determine the types of additional terms that render the models generic, i.e., with asymmetric states that appear via drift-pitchfork bifurcations and are generically moving. We provide detailed illustrations of our results using numerical continuation of resting and steadily drifting states in both generic and nongeneric cases.

6.
Phys Rev E ; 107(6-2): 065104, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464645

RESUMO

We consider the steady-state fingering instability of an elastic membrane separating two fluids of different density under external pressure in a rotating Hele-Shaw cell. Both inextensible and highly extensible membranes are considered, and the role of membrane tension is detailed in each case. Both systems exhibit a centrifugally driven Rayleigh-Taylor-like instability when the density of the inner fluid exceeds that of the outer one, and this instability competes with the restoring forces arising from curvature and tension, thereby setting the finger scale. Numerical continuation is used to compute not only strongly nonlinear primary finger states up to the point of self-contact, but also secondary branches of mixed modes and circumferentially localized folds as a function of the rotation rate and the externally imposed pressure. Both reflection-symmetric and symmetry-broken chiral states are computed. The results are presented in the form of bifurcation diagrams. The ratio of system scale to the natural length scale is found to determine the ordering of the primary bifurcations from the unperturbed circle state as well as the solution profiles and onset of secondary bifurcations.

7.
Phys Rev E ; 107(6-1): 064214, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464667

RESUMO

The cubic-quintic Swift-Hohenberg equation (SH35) has been proposed as an order parameter description of several convective systems with reflection symmetry in the layer midplane, including binary fluid convection. We use numerical continuation, together with extensive direct numerical simulations (DNSs), to study SH35 with an additional nonvariational quadratic term to model the effects of breaking the midplane reflection symmetry. The nonvariational structure of the model leads to the propagation of asymmetric spatially localized structures (LSs). An asymptotic prediction for the drift velocity of such structures, derived in the limit of weak symmetry breaking, is validated numerically. Next, we present an extensive study of possible collision scenarios between identical and nonidentical traveling structures, varying a temperaturelike control parameter. These collisions are inelastic and result in stationary or traveling structures. Depending on system parameters and the types of structures colliding, the final state may be a simple bound state of the initial LSs, but it can also be longer or shorter than the sum of the two initial states as a result of nonlinear interactions. The Maxwell point of the variational system, where the free energy of the global pattern state equals that of the trivial state, is shown to have no bearing on which of these scenarios is realized. Instead, we argue that the stability properties of bound states are key. While individual LSs lie on a modified snakes-and-ladders structure in the nonvariational SH35, the multipulse bound states resulting from collisions lie on isolas in parameter space, disconnected from the trivial solution. In the gradient SH35, such isolas are always of figure-eight shape, but in the present nongradient case they are generically more complex, although the figure-eight shape is preserved in a small subset of cases. Some of these complex isolas are shown to terminate in T-point bifurcations. A reduced model is proposed to describe the interactions between the tails of the LSs. The model consists of two coupled ordinary differential equations (ODEs) capturing the oscillatory nature of SH35 profiles at the linear level. It contains three parameters: two interaction amplitudes and a phase, whose values are deduced from high-resolution DNSs using gradient descent optimization. For collisions leading to the formation of simple bound states, the reduced model reproduces the trajectories of LSs with high quantitative accuracy. When nonlinear interactions lead to the creation or deletion of wavelengths, the model performs less well. Finally, we propose an effective signature of a given interaction in terms of net attraction or repulsion relative to free propagation. It is found that interactions can be attractive or repulsive in the net, irrespective of whether the two closest interacting extrema are of the same or opposite signs. Our findings highlight the rich temporal dynamics described by this bistable nonvariational SH35, and show that the interactions in this system can be quantitatively captured, to a significant extent, by a highly reduced ODE model.

8.
Chaos ; 33(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192394

RESUMO

We study the existence and stability of propagating fronts in Meinhardt's multivariable reaction-diffusion model of branching in one spatial dimension. We identify a saddle-node-infinite-period bifurcation of fronts that leads to episodic front propagation in the parameter region below propagation failure and show that this state is stable. Stable constant speed fronts exist only above this parameter value. We use numerical continuation to show that propagation failure is a consequence of the presence of a T-point corresponding to the formation of a heteroclinic cycle in a spatial dynamics description. Additional T-points are identified that are responsible for a large multiplicity of different unstable traveling front-peak states. The results indicate that multivariable models may support new types of behavior that are absent from typical two-variable models but may nevertheless be important in developmental processes such as branching and somitogenesis.

9.
Phys Rev Lett ; 130(17): 174002, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172227

RESUMO

The heat transport by rapidly rotating Rayleigh-Bénard convection is of fundamental importance to many geophysical flows. Laboratory measurements are impeded by robust wall modes that develop along vertical walls, significantly perturbing the heat flux. We show that narrow horizontal fins along the vertical walls efficiently suppress wall modes ensuring that their contribution to the global heat flux is negligible compared with bulk convection in the geostrophic regime, thereby paving the way for new experimental studies of geophysically relevant regimes of rotating convection.

10.
Phys Rev Lett ; 129(16): 164301, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306759

RESUMO

An exactly solvable family of models describing the wrinkling of substrate-supported inextensible elastic rings under compression is identified. The resulting wrinkle profiles are shown to be related to the buckled states of an unsupported ring and are therefore universal. Closed analytical expressions for the resulting universal shapes are provided, including the one-to-one relations between the pressure and tension at which these emerge. The analytical predictions agree with numerical continuation results to within numerical accuracy, for a large range of parameter values, up to the point of self-contact.


Assuntos
Pressão
11.
Chaos ; 32(12): 123129, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587350

RESUMO

We study the linear stability properties of spatially localized single- and multi-peak states generated in a subcritical Turing bifurcation in the Meinhardt model of branching. In one spatial dimension, these states are organized in a foliated snaking structure owing to peak-peak repulsion but are shown to be all linearly unstable, with the number of unstable modes increasing with the number of peaks present. Despite this, in two spatial dimensions, direct numerical simulations reveal the presence of stable single- and multi-spot states whose properties depend on the repulsion from nearby spots as well as the shape of the domain and the boundary conditions imposed thereon. Front propagation is shown to trigger the growth of new spots while destabilizing others. The results indicate that multi-variable models may support new types of behavior that are absent from typical two-variable models.

12.
Phys Rev E ; 104(1-1): 014208, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412325

RESUMO

Axisymmetric and nonaxisymmetric patterns in the cubic-quintic Swift-Hohenberg equation posed on a disk with Neumann boundary conditions are studied via numerical continuation and bifurcation analysis. Axisymmetric localized solutions in the form of spots and rings known from earlier studies persist and snake in the usual fashion until they begin to interact with the boundary. Depending on parameters, including the disk radius, these states may or may not connect to the branch of domain-filling target states. Secondary instabilities of localized axisymmetric states may create multiarm localized structures that grow and interact with the boundary before broadening into domain-filling states. High azimuthal wave number wall states referred to as daisy states are also found. Secondary bifurcations from these states include localized daisies, i.e., wall states localized in both radius and angle. Depending on parameters, these states may snake much as in the one-dimensional Swift-Hohenberg equation, or invade the interior of the domain, yielding states referred to as worms, or domain-filling stripes.

13.
Phys Rev E ; 103(3-1): 032601, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862772

RESUMO

The active phase-field-crystal (active PFC) model provides a simple microscopic mean field description of crystallization in active systems. It combines the PFC model (or conserved Swift-Hohenberg equation) of colloidal crystallization and aspects of the Toner-Tu theory for self-propelled particles. We employ the active PFC model to study the occurrence of localized and periodic active crystals in two spatial dimensions. Due to the activity, crystalline states can undergo a drift instability and start to travel while keeping their spatial structure. Based on linear stability analyses, time simulations, and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of resting and traveling states. We explore, for instance, how the slanted homoclinic snaking of steady localized states found for the passive PFC model is modified by activity. Morphological phase diagrams showing the regions of existence of various solution types are presented merging the results from all the analysis tools employed. We also study how activity influences the crystal structure with transitions from hexagons to rhombic and stripe patterns. This in-depth analysis of a simple PFC model for active crystals and swarm formation provides a clear general understanding of the observed multistability and associated hysteresis effects, and identifies thresholds for qualitative changes in behavior.

14.
Phys Rev E ; 104(6): L062201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030930

RESUMO

Oscillons, i.e., immobile spatially localized but temporally oscillating structures, are the subject of intense study since their discovery in Faraday wave experiments. However, oscillons can also disappear and reappear at a shifted spatial location, becoming jumping oscillons (JOs). We explain here the origin of this behavior in a three-variable reaction-diffusion system via numerical continuation and bifurcation theory, and show that JOs are created via a modulational instability of excitable traveling pulses (TPs). We also reveal the presence of bound states of JOs and TPs and patches of such states (including jumping periodic patterns) and determine their stability. This rich multiplicity of spatiotemporal states lends itself to information and storage handling.

15.
Phys Rev E ; 101(4-1): 042212, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422835

RESUMO

Mobility properties of spatially localized structures arising from chaotic but deterministic forcing of the bistable Swift-Hohenberg equation are studied and compared with the corresponding results when the chaotic forcing is replaced by white noise. Short structures are shown to possess greater mobility, resulting in larger root-mean-square speeds but shorter displacements than longer structures. Averaged over realizations, the displacement of the structure is ballistic at short times but diffusive at larger times. Similar results hold in two spatial dimensions. The effects of chaotic forcing on the stability of these structures is also quantified. Shorter structures are found to be more fragile than longer ones, and their stability region can be displaced outside the pinning region for constant forcing. Outside the stability region the deterministic fluctuations lead either to the destruction of the structure or to its gradual growth.

16.
Phys Rev E ; 100(1-1): 012204, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499926

RESUMO

We study numerically the cubic-quintic-septic Swift-Hohenberg (SH357) equation on bounded one-dimensional domains. Under appropriate conditions stripes with wave number k≈1 bifurcate supercritically from the zero state and form S-shaped branches resulting in bistability between small and large amplitude stripes. Within this bistability range we find stationary heteroclinic connections or fronts between small and large amplitude stripes, and demonstrate that the associated spatially localized defectlike structures either snake or fall on isolas. In other parameter regimes we also find heteroclinic connections to spatially homogeneous states and a multitude of dynamically stable steady states consisting of patches of small and large amplitude stripes with different wave numbers or of spatially homogeneous patches. The SH357 equation is thus extremely rich in the types of patterns it exhibits. Some of the features of the bifurcation diagrams obtained by numerical continuation can be understood using a conserved quantity, the spatial Hamiltonian of the system.

17.
Phys Rev E ; 99(6-1): 062226, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330663

RESUMO

Driven dissipative many-body systems are described by differential equations for macroscopic variables which include fluctuations that account for ignored microscopic variables. Here, we investigate the effect of deterministic fluctuations, drawn from a system in a state of phase turbulence, on front dynamics. We show that despite these fluctuations a front may remain pinned, in contrast to fronts in systems with Gaussian white noise fluctuations, and explore the pinning-depinning transition. In the deterministic case, this transition is found to be robust but its location in parameter space is complex, generating a fractal-like structure. We describe this transition by deriving an equation for the front position, which takes the form of an overdamped system with a ratchet potential and chaotic forcing; this equation can, in turn, be transformed into a linear parametrically driven oscillator with a chaotically oscillating frequency. The resulting description provides an unambiguous characterization of the pinning-depinning transition in parameter space. A similar calculation for noise-driven front propagation shows that the pinning-depinning transition is washed out.

18.
Phys Rev E ; 99(4-1): 043001, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108605

RESUMO

The properties of a hinged floating elastic sheet of finite length under compression are considered. Numerical continuation is used to compute spatially localized buckled states with many spatially localized folds. Both symmetric and antisymmetric states are computed and the corresponding bifurcation diagrams determined. Weakly nonlinear analysis is used to analyze the transition from periodic wrinkles to singlefold and multifold states and to compute their energy. States with the same number of folds have energies that barely differ from each other and the energy gap decreases exponentially as localization increases. The stability of the different competing states is studied and the multifold solutions are all found to be unstable. However, the decay time into solutions with fewer folds can be so slow that multifolds may appear to be stable.

19.
Phys Rev E ; 99(2-1): 023113, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934232

RESUMO

We analyze the effect of a small inclination on the well-studied problem of two-dimensional binary fluid convection in a horizontally extended closed rectangular box with a negative separation ratio, heated from below. The horizontal component of gravity generates a shear flow that replaces the motionless conduction state when inclination is not present. This large-scale flow interacts with the convective currents resulting from the vertical component of gravity. For very small inclinations the primary bifurcation of this flow is a Hopf bifurcation that gives rise to chevrons and blinking states similar to those obtained with no inclination. For larger but still small inclinations this bifurcation disappears and is superseded by a fold bifurcation of the large-scale flow. The convecton branches, i.e., branches of spatially localized states consisting of counterrotating rolls, are strongly affected, with the snaking bifurcation diagram present in the noninclined system destroyed already at small inclinations. For slightly larger but still small inclinations we obtain small-amplitude localized states consisting of corotating rolls that evolve continuously when the primary large-scale flow is continued in the Rayleigh number. These localized states lie on a solution branch with very complex behavior strongly dependent on the values of the system parameters. In addition, several disconnected branches connecting solutions in the form of corotating rolls, counterrotating rolls, and mixed corotating and counterrotating states are also obtained.

20.
Philos Trans A Math Phys Eng Sci ; 376(2135)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420543

RESUMO

Spatially localized structures in the one-dimensional Gray-Scott reaction-diffusion model are studied using a combination of numerical continuation techniques and weakly nonlinear theory, focusing on the regime in which the activator and substrate diffusivities are different but comparable. Localized states arise in three different ways: in a subcritical Turing instability present in this regime, and from folds in the branch of spatially periodic Turing states. They also arise from the fold of spatially uniform states. These three solution branches interconnect in complex ways. We use numerical continuation techniques to explore their global behaviour within a formulation of the model that has been used to describe dryland vegetation patterns on a flat terrain.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...