Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30681408

RESUMO

The cerebellum integrates sensory stimuli and motor actions to enable smooth coordination and motor learning. Here we harness the innate behavioral repertoire of the larval zebrafish to characterize the spatiotemporal dynamics of feature coding across the entire Purkinje cell population during visual stimuli and the reflexive behaviors that they elicit. Population imaging reveals three spatially-clustered regions of Purkinje cell activity along the rostrocaudal axis. Complementary single-cell electrophysiological recordings assign these Purkinje cells to one of three functional phenotypes that encode a specific visual, and not motor, signal via complex spikes. In contrast, simple spike output of most Purkinje cells is strongly driven by motor-related tail and eye signals. Interactions between complex and simple spikes show heterogeneous modulation patterns across different Purkinje cells, which become temporally restricted during swimming episodes. Our findings reveal how sensorimotor information is encoded by individual Purkinje cells and organized into behavioral modules across the entire cerebellum.


Assuntos
Comportamento Animal/fisiologia , Atividade Motora/fisiologia , Células de Purkinje/fisiologia , Percepção Visual/fisiologia , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Animais , Sinalização do Cálcio , Movimentos Oculares/fisiologia , Fenótipo , Análise de Regressão , Natação/fisiologia , Cauda
2.
Curr Biol ; 27(9): 1288-1302, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28434864

RESUMO

A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Grânulos Citoplasmáticos/fisiologia , Atividade Motora/fisiologia , Córtex Sensório-Motor/fisiologia , Peixe-Zebra/fisiologia , Animais , Cálcio/metabolismo , Larva/citologia , Larva/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Córtex Sensório-Motor/citologia , Peixe-Zebra/crescimento & desenvolvimento
3.
Front Neural Circuits ; 8: 121, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324729

RESUMO

In all but the simplest monosynaptic reflex arcs, sensory stimuli are encoded by sensory neurons that transmit a signal via sensory interneurons to downstream partners in order to elicit a response. In the embryonic zebrafish (Danio rerio), cutaneous Rohon-Beard (RB) sensory neurons fire in response to mechanical stimuli and excite downstream glutamatergic commissural primary ascending (CoPA) interneurons to produce a flexion response contralateral to the site of stimulus. In the absence of sensory stimuli, zebrafish spinal locomotor circuits are spontaneously active during development due to pacemaker activity resulting in repetitive coiling of the trunk. Self-generated movement must therefore be distinguishable from external stimuli in order to ensure the appropriate activation of touch reflexes. Here, we recorded from CoPAs during spontaneous and evoked fictive motor behaviors in order to examine how responses to self-movement are gated in sensory interneurons. During spontaneous coiling, CoPAs received glycinergic inputs coincident with contralateral flexions that shunted firing for the duration of the coiling event. Shunting inactivation of CoPAs was caused by a slowly deactivating chloride conductance that resulted in lowered membrane resistance and increased action potential threshold. During spontaneous burst swimming, which develops later, CoPAs received glycinergic inputs that arrived in phase with excitation to ipsilateral motoneurons and provided persistent shunting. During a touch stimulus, short latency glutamatergic inputs produced cationic currents through AMPA receptors that drove a single, large amplitude action potential in the CoPA before shunting inhibition began, providing a brief window for the activation of downstream neurons. We compared the properties of CoPAs to those of other spinal neurons and propose that glycinergic signaling onto CoPAs acts as a corollary discharge signal for reflex inhibition during movement.


Assuntos
Potenciais de Ação/fisiologia , Interneurônios/fisiologia , Filtro Sensorial/fisiologia , Natação/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Vias Aferentes/fisiologia , Animais , Embrião não Mamífero , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicinérgicos/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Larva , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Estimulação Física , Filtro Sensorial/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Medula Espinal/citologia , Estricnina/farmacologia , Tetrodotoxina/farmacologia , Valina/análogos & derivados , Valina/farmacologia , Peixe-Zebra
4.
J Neurosci ; 34(29): 9644-55, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25031404

RESUMO

Spontaneous network activity is a highly stereotyped early feature of developing circuits throughout the nervous system, including in the spinal cord. Spinal locomotor circuits produce a series of behaviors during development before locomotion that reflect the continual integration of spinal neurons into a functional network, but how the circuitry is reconfigured is not understood. The first behavior of the zebrafish embryo (spontaneous coiling) is mediated by an electrical circuit that subsequently generates mature locomotion (swimming) as chemical neurotransmission develops. We describe here a new spontaneous behavior, double coiling, that consists of two alternating contractions of the tail in rapid succession. Double coiling was glutamate-dependent and required descending hindbrain excitation, similar to but preceding swimming, making it a discrete intermediary developmental behavior. At the cellular level, motoneurons had a distinctive glutamate-dependent activity pattern that correlated with double coiling. Two glutamatergic interneurons, CoPAs and CiDs, had different activity profiles during this novel behavior. CoPA neurons failed to show changes in activity patterns during the period in which double coiling appears, whereas CiD neurons developed a glutamate-dependent activity pattern that correlated with double coiling and they innervated motoneurons at that time. Additionally, double coils were modified after pharmacological reduction of glycinergic neurotransmission such that embryos produced three or more rapidly alternating coils. We propose that double coiling behavior represents an important transition of the motor network from an electrically coupled spinal cord circuit that produces simple periodic coils to a spinal network driven by descending chemical neurotransmission, which generates more complex behaviors.


Assuntos
Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/citologia , Sinapses/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Estimulação Elétrica , Embrião não Mamífero , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Vias Neurais/embriologia , Rombencéfalo/fisiologia , Medula Espinal/embriologia , Sinapses/classificação , Sinapses/efeitos dos fármacos , Fatores de Transcrição/genética , Valina/análogos & derivados , Valina/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
J Neurosci ; 30(26): 8871-81, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592209

RESUMO

Neurons respond homeostatically to chronic changes in network activity with compensatory changes such as a uniform alteration in the size of miniature postsynaptic current (mPSC) amplitudes termed synaptic scaling. However, little is known about the impact of synaptic scaling on the function of neural networks in vivo. We used the embryonic zebrafish to address the effect of synaptic scaling on the neural network underlying locomotion. Activity was decreased during development by TTX injection to block action potentials or CNQX injection to block glutamatergic transmission. Alternatively TNFalpha was chronically applied. Recordings from spinal neurons showed that glutamatergic mPSCs scaled up approximately 25% after activity reduction and fortuitously scaled down approximately 20% after TNFalpha treatment, and were unchanged following blockade of neuromuscular activity alone with alpha-bungarotoxin. Regardless of the direction of scaling, immediately following reversal of treatment no chronic effect was distinguishable in motoneuron activity patterns or in swimming behavior. We also acutely induced a similar increase of glutamatergic mPSC amplitudes using cyclothiazide to reduce AMPA receptor desensitization or decrease of glutamatergic mPSC amplitudes using a low concentration of CNQX to partially block AMPA receptors. Though the strength of the motor output was altered, neither chronic nor acute treatments disrupted the patterning of synaptic activity or swimming. Our results show, for the first time, that scaling of glutamatergic synapses can be induced in vivo in the zebrafish and that synaptic patterning is less plastic than synaptic strength during development.


Assuntos
Neurônios Motores/fisiologia , Natação/fisiologia , Sinapses/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Ácido Glutâmico/metabolismo , Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/embriologia , Músculo Esquelético/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/embriologia , Vias Neurais/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...