Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thyroid ; 27(12): 1534-1543, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29032724

RESUMO

BACKGROUND: Anaplastic thyroid carcinoma (ATC), the most aggressive form of thyroid cancer, is unresponsive to radioiodine therapy. The current study aimed to extend the diagnostic and therapeutic application of radioiodine beyond the treatment of differentiated thyroid cancer by targeting the functional sodium-iodide symporter (NIS) to ATC. METHODS: The study employed nanoparticle vectors (polyplexes) based on linear polyethylenimine (LPEI), shielded by polyethylene glycol (PEG) and coupled to the synthetic peptide GE11 as an epidermal growth factor receptor (EGFR)-specific ligand in order to target a NIS-expressing plasmid (LPEI-PEG-GE11/NIS) to EGFR overexpressing human thyroid carcinoma cell lines. Using ATC xenograft mouse models, transfection efficiency by 123I scintigraphy and potential for systemic radioiodine therapy after systemic polyplex application were evaluated. RESULTS: In vitro iodide uptake studies in SW1736 and Hth74 ATC cells, and, for comparison, in more differentiated follicular (FTC-133) and papillary (BCPAP) thyroid carcinoma cells demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS that correlated well with EGFR expression levels. After systemic polyplex injection, in vivo 123I gamma camera imaging revealed significant tumor-specific accumulation of radioiodine in an SW1736 and an Hth74 xenograft mouse model. Radioiodine accumulation was found to be higher in SW1736 tumors, reflecting in vitro results, EGFR expression levels, and results from ex vivo analysis of NIS staining. Administration of 131I in LPEI-PEG-GE11/NIS-treated SW1736 xenograft mice resulted in significantly reduced tumor growth associated with prolonged survival compared to control animals. CONCLUSIONS: The data open the exciting prospect of NIS-mediated radionuclide imaging and therapy of ATC after non-viral reintroduction of the NIS gene. The high tumor specificity after systemic application makes the strategy an attractive alternative for the treatment of highly metastatic ATC.


Assuntos
Simportadores/metabolismo , Carcinoma Anaplásico da Tireoide/terapia , Neoplasias da Glândula Tireoide/terapia , Animais , Linhagem Celular Tumoral , Receptores ErbB , Terapia Genética , Humanos , Radioisótopos do Iodo/uso terapêutico , Camundongos , Peptídeos , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
2.
Oncotarget ; 7(34): 54795-54810, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27458162

RESUMO

Adoptively transferred mesenchymal stem cells (MSCs) home to solid tumors. Biologic features within the tumor environment can be used to selectively activate transgenes in engineered MSCs after tumor invasion. One of the characteristic features of solid tumors is hypoxia. We evaluated a hypoxia-based imaging and therapy strategy to target expression of the sodium iodide symporter (NIS) gene to experimental hepatocellular carcinoma (HCC) delivered by MSCs.MSCs engineered to express transgenes driven by a hypoxia-responsive promoter showed robust transgene induction under hypoxia as demonstrated by mCherry expression in tumor cell spheroid models, or radioiodide uptake using NIS. Subcutaneous and orthotopic HCC xenograft mouse models revealed significant levels of perchlorate-sensitive NIS-mediated tumoral radioiodide accumulation by tumor-recruited MSCs using 123I-scintigraphy or 124I-positron emission tomography. Functional NIS expression was further confirmed by ex vivo 123I-biodistribution analysis. Administration of a therapeutic dose of 131I in mice treated with NIS-transfected MSCs resulted in delayed tumor growth and reduced tumor perfusion, as shown by contrast-enhanced sonography, and significantly prolonged survival of mice bearing orthotopic HCC tumors. Interestingly, radioiodide uptake into subcutaneous tumors was not sufficient to induce therapeutic effects. Our results demonstrate the potential of using tumor hypoxia-based approaches to drive radioiodide therapy in non-thyroidal tumors.


Assuntos
Radioisótopos do Iodo/uso terapêutico , Neoplasias Hepáticas Experimentais/radioterapia , Neoplasias Hepáticas/radioterapia , Células-Tronco Mesenquimais/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Hipóxia , Radioisótopos do Iodo/farmacocinética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos Nus , Simportadores/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Eur Thyroid J ; 4(Suppl 1): 74-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601076

RESUMO

Due to the high variance in available protocols on iodide-131 ((131)I) ablation in rodents, we set out to establish an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium iodide symporter (NIS) as a reporter gene without interference with thyroidal NIS. We tested a range of (131)I doses with and without prestimulation of thyroidal radioiodide uptake by a low-iodine diet and thyroid-stimulating hormone (TSH) application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 concentrations, pituitary TSHß and liver deiodinase type 1 (DIO1) mRNA expression, body weight analysis, and (99m)Tc-pertechnetate scintigraphy. While 200 µCi (7.4 MBq) (131)I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 MBq) (131)I combined with 1 week of a low-iodine diet decreased serum concentrations below the detection limit. However, the high (131)I dose resulted in severe side effects. A combination of 1 week of a low-iodine diet followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) (131)I decreased serum T4 concentrations below the detection limit and significantly increased pituitary TSHß concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and a decrease in liver DIO1 expression below the detection limit. (99m)Tc-pertechnetate scintigraphy revealed absence of thyroidal (99m)Tc-pertechnetate uptake in ablated mice. In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to generate an in vivo model that allows the study of thyroid hormone action using NIS as a reporter gene.

4.
J Nucl Med ; 56(4): 600-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25745085

RESUMO

UNLABELLED: The tumor-homing property of mesenchymal stem cells (MSCs) allows targeted delivery of therapeutic genes into the tumor microenvironment. The application of sodium iodide symporter (NIS) as a theranostic gene allows noninvasive imaging of MSC biodistribution and transgene expression before therapeutic radioiodine application. We have previously shown that linking therapeutic transgene expression to induction of the chemokine CCL5/RANTES allows a more focused expression within primary tumors, as the adoptively transferred MSC develop carcinoma-associated fibroblast-like characteristics. Although RANTES/CCL5-NIS targeting has shown efficacy in the treatment of primary tumors, it was not clear if it would also be effective in controlling the growth of metastatic disease. METHODS: To expand the potential range of tumor targets, we investigated the biodistribution and tumor recruitment of MSCs transfected with NIS under control of the RANTES/CCL5 promoter (RANTES-NIS-MSC) in a colon cancer liver metastasis mouse model established by intrasplenic injection of the human colon cancer cell line LS174t. RANTES-NIS-MSCs were injected intravenously, followed by (123)I scintigraphy, (124)I PET imaging, and (131)I therapy. RESULTS: Results show robust MSC recruitment with RANTES/CCL5-promoter activation within the stroma of liver metastases as evidenced by tumor-selective iodide accumulation, immunohistochemistry, and real-time polymerase chain reaction. Therapeutic application of (131)I in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved overall survival. CONCLUSION: This novel gene therapy approach opens the prospect of NIS-mediated radionuclide therapy of metastatic cancer after MSC-mediated gene delivery.


Assuntos
Neoplasias do Colo/radioterapia , Radioisótopos do Iodo/uso terapêutico , Células-Tronco Mesenquimais/citologia , Simportadores/química , Simportadores/genética , Animais , Linhagem Celular Tumoral , Quimiocina CCL5/metabolismo , Feminino , Fibroblastos/metabolismo , Terapia Genética/métodos , Humanos , Neoplasias Hepáticas/radioterapia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Plasmídeos/metabolismo , Tomografia por Emissão de Pósitrons , Cintilografia , Transgenes , Microambiente Tumoral
5.
Hum Gene Ther ; 24(3): 306-16, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23402366

RESUMO

The tumor-homing property of mesenchymal stem cells (MSC) has lead to their use as delivery vehicles for therapeutic genes. The application of the sodium iodide symporter (NIS) as therapy gene allows noninvasive imaging of functional transgene expression by (123)I-scintigraphy or PET-imaging, as well as therapeutic application of (131)I or (188)Re. Based on the critical role of the chemokine RANTES (regulated on activation, normal T-cell expressed and presumably secreted)/CCL5 secreted by MSCs in the course of tumor stroma recruitment, use of the RANTES/CCL5 promoter should allow tumor stroma-targeted expression of NIS after MSC-mediated delivery. Using a human hepatocellular cancer (HCC) xenograft mouse model (Huh7), we investigated distribution and tumor recruitment of RANTES-NIS-engineered MSCs after systemic injection by gamma camera imaging. (123)I-scintigraphy revealed active MSC recruitment and CCL5 promoter activation in the tumor stroma of Huh7 xenografts (6.5% ID/g (123)I, biological half-life: 3.7 hr, tumor-absorbed dose: 44.3 mGy/MBq). In comparison, 7% ID/g (188)Re was accumulated in tumors with a biological half-life of 4.1 hr (tumor-absorbed dose: 128.7 mGy/MBq). Administration of a therapeutic dose of (131)I or (188)Re (55.5 MBq) in RANTES-NIS-MSC-treated mice resulted in a significant delay in tumor growth and improved survival without significant differences between (131)I and (188)Re. These data demonstrate successful stromal targeting of NIS in HCC tumors by selective recruitment of NIS-expressing MSCs and by use of the RANTES/CCL5 promoter. The resulting tumor-selective radionuclide accumulation was high enough for a therapeutic effect of (131)I and (188)Re opening the exciting prospect of NIS-mediated radionuclide therapy of metastatic cancer using genetically engineered MSCs as gene delivery vehicles.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/terapia , Células-Tronco Mesenquimais/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Radioisótopos do Iodo/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons , RNA Mensageiro/genética , Simportadores/genética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Hum Gene Ther ; 22(12): 1563-74, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21851208

RESUMO

We reported the induction of tumor-selective iodide uptake and therapeutic efficacy of (131)I in a hepatocellular carcinoma (HCC) xenograft mouse model, using novel polyplexes based on linear polyethylenimine (LPEI), shielded by polyethylene glycol (PEG), and coupled with the epidermal growth factor receptor-specific peptide GE11 (LPEI-PEG-GE11). The aim of the current study in the same HCC model was to evaluate the potential of biodegradable nanoparticle vectors based on pseudodendritic oligoamines (G2-HD-OEI) for systemic sodium iodide symporter (NIS) gene delivery and to compare efficiency and tumor specificity with LPEI-PEG-GE11. Transfection of HCC cells with NIS cDNA, using G2-HD-OEI, resulted in a 44-fold increase in iodide uptake in vitro as compared with a 22-fold increase using LPEI-PEG-GE11. After intravenous application of G2-HD-OEI/NIS HCC tumors accumulated 6-11% ID/g (123)I (percentage of the injected dose per gram tumor tissue) with an effective half-life of 10 hr (tumor-absorbed dose, 281 mGy/MBq) as measured by (123)I scintigraphic gamma camera or single-photon emission computed tomography computed tomography (SPECT CT) imaging, as compared with 6.5-9% ID/g with an effective half-life of only 6 hr (tumor-absorbed dose, 47 mGy/MBq) for LPEI-PEG-GE11. After only two cycles of G2-HD-OEI/NIS/(131)I application, a significant delay in tumor growth was observed with markedly improved survival. A similar degree of therapeutic efficacy had been observed after four cycles of LPEI-PEG-GE11/(131)I. These results clearly demonstrate that biodegradable nanoparticles based on OEI-grafted oligoamines show increased efficiency for systemic NIS gene transfer in an HCC model with similar tumor selectivity as compared with LPEI-PEG-GE11, and therefore represent a promising strategy for NIS-mediated radioiodine therapy of HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Terapia Genética , Radioisótopos do Iodo/uso terapêutico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Simportadores/genética , Animais , Western Blotting , Carcinoma Hepatocelular/genética , Proliferação de Células , Terapia Combinada , Sistemas de Liberação de Medicamentos , Imunofluorescência , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Humanos , Processamento de Imagem Assistida por Computador , Técnicas Imunoenzimáticas , Radioisótopos do Iodo/farmacocinética , Neoplasias Hepáticas/genética , Camundongos , Camundongos Nus , Imagem Multimodal , Polietilenoglicóis/administração & dosagem , Polietilenoimina/administração & dosagem , Tomografia por Emissão de Pósitrons , RNA Mensageiro/genética , Radioterapia , Reação em Cadeia da Polimerase em Tempo Real , Tomografia Computadorizada por Raios X , Células Tumorais Cultivadas
7.
Mol Ther ; 19(9): 1704-13, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21587211

RESUMO

Due to its dual role as reporter and therapy gene, the sodium iodide symporter (NIS) allows noninvasive imaging of functional NIS expression by (123)I-scintigraphy or (124)I-PET imaging before the application of a therapeutic dose of (131)I. NIS expression provides a novel mechanism for the evaluation of mesenchymal stem cells (MSCs) as gene delivery vehicles for tumor therapy. In the current study, we stably transfected bone marrow-derived CD34(-) MSCs with NIS cDNA (NIS-MSC), which revealed high levels of functional NIS protein expression. In mixed populations of NIS-MSCs and hepatocellular cancer (HCC) cells, clonogenic assays showed a 55% reduction of HCC cell survival after (131)I application. We then investigated body distribution of NIS-MSCs by (123)I-scintigraphy and (124)I-PET imaging following intravenous (i.v.) injection of NIS-MSCs in a HCC xenograft mouse model demonstrating active MSC recruitment into the tumor stroma which was confirmed by immunohistochemistry and ex vivo γ-counter analysis. Three cycles of systemic MSC-mediated NIS gene delivery followed by (131)I application resulted in a significant delay in tumor growth. Our results demonstrate tumor-specific accumulation and therapeutic efficacy of radioiodine after MSC-mediated NIS gene delivery in HCC tumors, opening the prospect of NIS-mediated radionuclide therapy of metastatic cancer using MSCs as gene delivery vehicles.


Assuntos
Carcinoma Hepatocelular/radioterapia , Técnicas de Transferência de Genes , Neoplasias Hepáticas/radioterapia , Células-Tronco Mesenquimais/patologia , Simportadores/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Western Blotting , Carcinoma Hepatocelular/genética , Sobrevivência Celular , Feminino , Imunofluorescência , Terapia Genética/métodos , Células Hep G2 , Humanos , Radioisótopos do Iodo/farmacocinética , Neoplasias Hepáticas/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Simportadores/metabolismo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...