Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 5627-5636, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275195

RESUMO

This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.


Assuntos
Nanoestruturas , Titânio , Teste de Materiais , Titânio/farmacologia , Titânio/química , Nanoestruturas/química , Ligas/farmacologia , Ligas/química
2.
Molecules ; 28(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687092

RESUMO

In this study, we propose a promising photoprotective additive that combines the advantages of both organic UV absorbers and inorganic particles without compromising the properties of the paint material. This additive involves the intercalation of a well-known organic UV absorber, 2-phenylbenzimidazole-5-sulfonic acid (PBISA), into zinc-aluminum layered double hydroxide (ZnAl-LDH). Three ZnAl-LDH intercalates with PBISA were prepared using various methods based on either anion exchange or direct synthesis. The intercalates were characterized using powder X-ray diffraction, thermogravimetry, elemental analysis, and IR and UV-Vis spectroscopies. The composition and basal spacings of all three intercalates are very similar. An effective UV protection film was prepared when the ZnAl-PBISA-1 intercalate was incorporated into polyurethane-acrylate lacquer. The resultant UV protective film exhibited stability and uniform distribution of the intercalated fillers. Some minimal particle sedimentation and aggregation were observed on the cured film's underside, but did not compromise the films' UV protective properties. The prepared lacquers with intercalated fillers offer a viable solution for the surface modification of plastic products.

3.
Biomacromolecules ; 24(7): 3016-3031, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37249916

RESUMO

Layered nanoparticles with surface charge are explored as rheological modifiers for extrudable materials, utilizing their ability to induce electrostatic repulsion and create a house-of-cards structure. These nanoparticles provide mechanical support to the polymer matrix, resulting in increased viscosity and storage modulus. Moreover, their advantageous aspect ratio allows for shear-induced orientation and decreased viscosity during flow. In this work, we present a synthesis and liquid-based exfoliation procedure of phenylphosphonate-phosphate particles with enhanced ability to be intercalated by hydrophilic polymers. These layered nanoparticles are then tested as rheological modifiers of sodium alginate. The effective rheological modification is proved as the viscosity increases from 101 up to 103 Pa·s in steady state. Also, shear-thinning behavior is observed. The resulting nanocomposite hydrogels show potential as an extrudable bioink for 3D printing in tissue engineering and other biomedical applications, with good shape fidelity, nontoxicity, and satisfactory cell viability confirmed through encapsulation and printing of mouse fibroblasts.


Assuntos
Bioimpressão , Organofosfonatos , Animais , Camundongos , Alginatos/química , Cálcio , Engenharia Tecidual/métodos , Reologia , Polímeros , Impressão Tridimensional , Hidrogéis/farmacologia , Hidrogéis/química , Bioimpressão/métodos , Alicerces Teciduais/química
4.
Int J Nanomedicine ; 17: 4211-4225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124012

RESUMO

Purpose: Titanium dioxide nanoparticles, 25 nm in size of crystallites (TiO2 P25), are among the most produced nanomaterials worldwide. The broad use of TiO2 P25 in material science has implied a request to evaluate their biological effects, especially in the lungs. Hence, the pulmonary A549 cell line has been used to estimate the effects of TiO2 P25. However, the reports have provided dissimilar results on caused toxicity. Surprisingly, the physicochemical factors influencing TiO2 P25 action in biological models have not been evaluated in most reports. Thus, the objective of the present study is to characterize the preparation of TiO2 P25 for biological testing in A549 cells and to evaluate their biological effects. Methods: We determined the size and crystallinity of TiO2 P25. We used four techniques for TiO2 P25 dispersion. We estimated the colloid stability of TiO2 P25 in distilled water, isotonic NaCl solution, and cell culture medium. We applied the optimal dispersion conditions for testing the biological effects of TiO2 P25 (0-100 µg.mL-1) in A549 cells using biochemical assays (dehydrogenase activity, glutathione levels) and microscopy. Results: We found that the use of fetal bovine serum in culture medium is essential to maintain sufficient colloid stability of dispersed TiO2 P25. Under these conditions, TiO2 P25 were unable to induce a significant impairment of A549 cells according to the results of biochemical and microscopy evaluations. When the defined parameters for the use of TiO2 P25 in A549 cells were met, similar results on the biological effects of TiO2 P25 were obtained in two independent cell laboratories. Conclusion: We optimized the experimental conditions of TiO2 P25 preparation for toxicity testing in A549 cells. The results presented here on TiO2 P25-induced cellular effects are reproducible. Therefore, our results can be helpful for other researchers using TiO2 P25 as a reference material.


Assuntos
Nanopartículas , Soroalbumina Bovina , Células A549 , Glutationa , Humanos , Pulmão , Nanopartículas Metálicas , Nanopartículas/química , Oxirredutases , Cloreto de Sódio , Titânio , Água
5.
Materials (Basel) ; 15(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35629562

RESUMO

In this study, the de-icing performance is investigated between traditional carbon fibre-based coatings and novel MXene and poly(3,4-ethylenedioxythiophene)-coated single-walled carbon nanotube (PEDOT-CNT) nanocoatings, based on simple and scalable coating application. The thickness and morphology of the coatings are investigated using atomic force microscopy and scanning electron microscopy. Adhesion strength, as well as electrical properties, are evaluated on rough and glossy surfaces of the composite. The flexibility and electrical sensitivity of the coatings are studied under three-point bending. Additionally, the influence of ambient temperature on coating's electrical resistance is investigated. Finally, thermal imaging and Joule heating are analysed with high-accuracy infrared cameras. Under the same power density, the increase in average temperature is 84% higher for MXenes and 117% for PEDOT-CNT, when compared with fibre-based coatings. Furthermore, both nanocoatings result in up to three times faster de-icing. These easily processable nanocoatings offer fast and efficient de-icing for large composite structures such as wind turbine blades without adding any significant weight.

6.
Aquat Toxicol ; 237: 105869, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082272

RESUMO

Silver nanoparticles (Ag NPs) are widely used in consumer products especially because of their antimicrobial properties. However, this wide usage of Ag NPs is accompanied by their release into the environment where they will be rapidly transformed to other silver species - especially silver sulfide (Ag2S). In the present study, we synthesized Ag NPs and sulfidized them to obtain a core-shell system Ag@Ag2S NPs. Both types of particles form stable dispersions with hydrodynamic diameters of less than 100 nm when diluted in water, but tend to form micrometer-sized agglomerates in biological exposure media. Application of Ag and Ag@Ag2S NPs to rainbow trout intestinal cells (RTgutGC) resulted in a concentration-dependent cytotoxicity for both types of particles, as assessed by a three-endpoint assay for metabolic activity, membrane integrity and lysosomal integrity. The Ag NPs were shown to be slightly more toxic than the Ag@Ag2S NPs. Adding Ag or Ag@Ag2S NPs to RTgutGC cells, grown on a permeable membrane to mimic the intestinal barrier, revealed considerable accumulation of silver for both types of particles. Indeed, the cells significantly attenuated the NP translocation, allowing only a fraction of the metal to translocate across the intestinal epithelium. These findings support the notion that the intestine constitutes an important sink for Ag NPs and that, despite the reduced cytotoxicity of a sulfidized NP form, the particles can enter fish where they may constitute a long-term source for silver ion release and cytotoxicity.


Assuntos
Nanopartículas Metálicas , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Intestinos , Nanopartículas Metálicas/toxicidade , Prata/análise , Prata/toxicidade , Compostos de Prata , Poluentes Químicos da Água/toxicidade
7.
ACS Appl Bio Mater ; 3(9): 6447-6456, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021776

RESUMO

The present work exploits Ti sheets and TiO2 nanotube (TNT) layers and their surface modifications for the proliferation of different cells. Ti sheets with a native oxide layer, Ti sheets with a crystalline thermal oxide layer, and two kinds of TNT layers (prepared via electrochemical anodization) with a defined inner diameter of 12 and 15 nm were used as substrates. A part of the Ti sheets and the TNT layers was additionally coated by thin TiO2 coatings using atomic layer deposition (ALD). An increase in cell growth of WI-38 fibroblasts (>50%), MG-63 osteoblasts (>30%), and SH-SY5Y neuroblasts (>30%) was observed for all materials coated by five cycles ALD compared to their uncoated counterparts. The additional ALD TiO2 coatings changed the surface composition of all materials but preserved their original structure and protected them from unwanted crystallization and shape changes. The presented approach of mild surface modification by ALD has a significant effect on the materials' biocompatibility and is promising toward application in implant materials.

8.
Dalton Trans ; 49(12): 3816-3823, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-31830166

RESUMO

Mixed zirconium 4-sulfophenylphosphonate phenylphosphonates with formulae Zr(HO3SC6H4PO3)1.8(C6H5PO3)0.2·2.6H2O, Zr(HO3SC6H4PO3)1.3(C6H5PO3)0.7·2H2O, and Zr(HO3SC6H4PO3)0.7(C6H5PO3)1.3·3.6H2O (generally, ZrSPhP) were intercalated with a series of amino alcohols, H2N(CH2)nOH, where n = 2 to 6, and triethylamine. It was found that in the case of amino alcohols the basal spacing of the intercalates increases linearly with n. The intercalates prepared can be exfoliated either by sonication or by the action of high-shear forces. The use of a high-shear force disperser is a more efficient exfoliation method, as it provides lamellas with larger lateral dimensions in a much shorter time. It was found that amino alcohols provide roughly the same results regardless of the length of their carbon chain. As follows from atomic force microscopy measurements, triethylamine is the most appropriate exfoliation agent for ZrSPhP as it produces platelets with the largest lateral size and the lowest amount of defects.

9.
Beilstein J Nanotechnol ; 10: 1401-1411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31431852

RESUMO

This study deals with the preparation and characterization of metallic nanoinclusions on the surface of semiconducting Bi2Se3 that could be used for an enhancement of the efficiency of thermoelectric materials. We used Au forming a 1D alloy through diffusion (point nanoinclusion) and Mo forming thermodynamically stable layered MoSe2 nanosheets through the reaction with the Bi2Se3. The Schottky barrier formed by the 1D and 2D nanoinclusions was characterized by means of atomic force microscopy (AFM). We used Kelvin probe force microscopy (KPFM) in ambient atmosphere at the nanoscale and compared the results to those of ultraviolet photoelectron spectroscopy (UPS) in UHV at the macroscale. The existence of the Schottky barrier was demonstrated at +120 meV for the Mo layer and -80 meV for the Au layer reflecting the formation of MoSe2 and Au/Bi2Se3 alloy, respectively. The results of both methods (KPFM and UPS) were in good agreement. We revealed that long-time exposure (tens of seconds) to the electrical field leads to deep oxidation and the formation of perturbations greater than 1 µm in height, which hinder the I-V measurements.

10.
Beilstein J Nanotechnol ; 9: 2906-2915, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546987

RESUMO

The use of nanosheets of layered calcium phenylphosphonate as a filler in a polymeric matrix was investigated. Layered calcium phenylphosphonate (CaPhP), with chemical formula CaC6H5PO3∙2H2O, is a hybrid organic-inorganic material that exhibits a hydrophobic character due to the presence of phenyl groups on the surface of the layers. In this paper, various CaPhP synthesis methods were studied with the aim of obtaining a product most suitable for its subsequent exfoliation. The liquid-based approach was used for the exfoliation. It was found that the most promising technique for the exfoliation of CaPhP in an amount sufficient for incorporation into polymers involved using propan-2-ol with a strong shear force generated in a high-shear disperser. The filler was tested both in its unexfoliated and exfoliated forms for the preparation of polymer composites, for which a low molecular weight epoxy resin based on bisphenol A was used as a polymer matrix. The prepared samples were characterized by powder X-ray diffraction, atomic force microscopy, optical and scanning electron microscopy, and dynamic mechanical analysis. Flammability and gas permeation tests were also performed. The addition of the nanofiller was found to influence the composite properties - the exfoliated particles were found to have a higher impact on the properties of the prepared composites than the unexfoliated particles of the same loading.

11.
Chemistry ; 24(54): 14470-14476, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30016544

RESUMO

Studies have been focused on the synthesis of N→Ga-coordinated organogallium selenides and tellurides [L1 Ga(µ-Se)]2 (1), [L2 Ga(µ-Se)]2 (2) and [L1 Ga(µ-Te)]2 (3), respectively, containing either N,C,N- or C,N-chelating ligands L1, 2 (L1 is {2,6-(Me2 NCH2 )2 C6 H3 }- and L2 is {2-(Et2 NCH2 )-4,6-tBu2 -C6 H2 }- ) having Ga/E (E=Se or Te) atoms in 1/1 ratio. To change the Ga/E ratio, an unusual N→Ga-coordinated organogallium tetraselenide L1 Ga(κ2 -Se4 ) (4) was prepared. An unprecedented complex (L1 Ga)2 (µ-Te2 )(µ-Te) (5), as the result of the non-stability of 3, was also isolated. Compound 2 is a suitable single-source precursor for the preparation of amorphous GaSe thin films by the spin coating. Moreover, simple heating of an octadecylamine solution of 2 provided, after work up, monoclinic Ga2 Se3 crystals with different crystallinity according to conditions used. Therefore, compound 2 may be also used as a source of Ga2 Se3 in the low-temperature doping process of Bi2 Se3 .

12.
Environ Sci Pollut Res Int ; 25(23): 22702-22709, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29851017

RESUMO

Acute toxicity of zinc oxide nanoparticle (ZnO-NP, mean particle size diameter of 10 nm) powder and water-soluble salt of zinc (ZnCl2) to annelid Enchytraeus crypticus was tested using an agar-based nutrient-enriched medium with the addition of kaolin and humic acids (HA). Adults of the E. crypticus were cultivated in pure agar and in three types of modified exposure media containing different proportions of model soil constituents. Potworms were exposed to zinc in both forms (1-1000 mg kg-1 of agar) for 96 h. In experiments with ZnCl2, toxicity of zinc was the highest in pure agar followed by agar with HA and agar with kaolin and HA and the lowest toxicity was observed in agar with kaolin. The corresponding LC50 values were 13.2, 28.8, 39.4, and 75.4 mg kg-1 respectively. In contrast, zinc in the form of ZnO-NPs was most toxic in the presence of HA followed by pure agar, agar with kaolin, and kaolin with HA. In this case, LC50 values were 15.8, 43.5, 111, and 122 mg kg-1 respectively. Scanning electron microscopy revealed that the smallest agglomerates occurred in the presence of kaolin, where ZnO-NPs were sealed in a kaolin shell. This effect reduced the bioavailability and toxicity of the NPs. In contrast, larger agglomerates were observed in the presence of HA but a larger amount of zinc was dispersed in the volume of agar.


Assuntos
Cloretos/toxicidade , Meios de Cultura/análise , Nanopartículas Metálicas/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Testes de Toxicidade Aguda/métodos , Compostos de Zinco/toxicidade , Óxido de Zinco/toxicidade , Ágar/análise , Animais , Oligoquetos/crescimento & desenvolvimento
13.
J Mater Sci Mater Med ; 29(3): 32, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29546462

RESUMO

In this work, a hybrid copolymer consisting of poly(3-hydroxybutyrate) grafted to hyaluronic acid (HA) was synthesised and characterised. Once formed, the P(3HB)-g-HA copolymer was soluble in water allowing a green electrospinning process. The diameters of nanofibres can be tailored by simply varying the Mw of polymer. The optimization of the process allowed to produce fibres of average diameter in the range of 100-150 nm and low polydispersity. The hydrophobic modification has not only increased the fibre diameter, but also the obtained layers were homogenous. At the nanoscale, the hybrid copolymer exhibited an unusual hairy topography. Moreover, the hardness and tensile properties of the hybrid were found to be superior compared to fibres made of unmodified HA. Particularly, this reinforcement was achieved at the longitudinal direction. Additionally, this work reports the use in the composition of a water-soluble copolymer containing photo cross-linkable moieties to produce insoluble materials post-electrospinning. The derivatives as well as their nanofibrous mats retain the biocompatibility of the natural polymers used for the fabrication.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis , Ácido Hialurônico/química , Hidroxibutiratos/química , Nanofibras/química , Poliésteres/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Atenção à Saúde , Equipamentos e Provisões , Interações Hidrofóbicas e Hidrofílicas , Hidroxibutiratos/síntese química , Poliésteres/síntese química , Polímeros/síntese química , Polímeros/química , Alicerces Teciduais/química
14.
Environ Sci Pollut Res Int ; 22(23): 19124-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26233755

RESUMO

Formation of agglomerates and their rapid sedimentation during aquatic ecotoxicity testing of nanoparticles is a major issue with a crucial influence on the risk assessment of nanomaterials. The present work is aimed at developing and testing a new approach based on the periodic replacement of liquid media during an ecotoxicological experiment which enabled the efficient monitoring of exposure conditions. A verified mathematical model predicted the frequencies of media exchanges which checked for formation of agglomerates from silver nanoparticles AgNP with 50 nm average size of the original colloid. In the model experiments, embryos of common carp Cyprinus carpio were exposed repeatedly for 6 h to AgNPs (5-50 µm Ag L(-1)) either under semistatic conditions (exchange of media after 6 h) or in variants with frequent media exchanges (varying from 20 to 300 min depending on the AgNP colloid concentration and the desired maximum agglomerate size of 200 or 400 nm). In contrast to other studies, where dissolved free metals are usually responsible for toxic effects, our 144-h experiments demonstrated the importance of AgNP agglomerates in the adverse effects of nanosilver. Direct adsorption of agglomerates on fish embryos locally increased Ag concentrations which resulted in pronounced toxicity particularly in variants with larger 400 nm agglomerates. The present study demonstrates the suitability of the novel methodology in controlling the conditions during aquatic nanomaterial toxicity testing. It further provided insights into the mechanisms underlying the effects of AgNP, which rank on a global scale among the most widely used nanomaterials.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Carpas , Coloides , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Cinética , Tamanho da Partícula
15.
Mater Sci Eng C Mater Biol Appl ; 44: 345-51, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25280714

RESUMO

Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages. In this work, we describe enhanced post-synthetic surface modification of superparamagnetic microparticles varying in materials and size using hyaluronic acid (HA) in various chain lengths. Scanning electron microscopy, atomic force microscopy, phase analysis light scattering and laser diffraction are the methods used for characterization of HA-coated particles. The zeta potential and thickness of HA-layer of HA-coated Dynabeads M270 Amine were -50 mV and 85 nm, respectively, and of HA-coated p(GMA-MOEAA)-NH2 were -38 mV and 140 nm, respectively. The electrochemical analysis confirmed the zero leakage of magnetic material and no reactivity of particles with hydrogen peroxide. The rate of non-specific sorption of bovine serum albumin was reduced up to 50% of the naked ones. The coating efficiency and suitability of biopolymer-based microparticles for magnetically active microfluidic devices were confirmed.


Assuntos
Ácido Hialurônico/química , Magnetismo , Microfluídica/métodos , Fenômenos Químicos , Compostos Férricos/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Soroalbumina Bovina , Propriedades de Superfície
16.
Mater Sci Eng C Mater Biol Appl ; 40: 308-15, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24857498

RESUMO

In this study, magnetic poly(glycidyl methacrylate) microparticles containing carboxyl groups (PGMA-COOH) were coated using highly hydrophilic polymer poly(ethylene glycol) (PEG). PEG was used to reduce nonspecific interactions with proteins and cells while decreasing adhesion of particles to the walls of a microfluidic devices from poly(dimethylsiloxane) (PDMS) and cyclic olefin copolymer (COC). Zeta potential measurement, infrared spectroscopy, scanning electron microscopy, anti-PEG ELISA assay, and bioaffinity interactions between biotin and streptavidin-HRP successfully proved the presence of PEG on the surface of microspheres. Both neat and PEGylated microspheres were then incubated with the inert protein bovine serum albumin or cells to evaluate the rate of nonspecific adsorption (NSA). PEG with Mr of 30,000 Da was responsible for 45% reduction in NSA of proteins and 74% for cells compared to neat particles. The microspheres' behavior in PDMS and COC microchannels was then evaluated. Aggregation and adhesion of PEGylated microspheres significantly decreased compared to neat particles. Finally, the model enzyme horseradish peroxidase was immobilized on the microspheres through the heterobifunctional PEG chain. The possibility for subsequent covalent coupling of the ligand of interest was confirmed. Such PEGylated microparticles can be efficiently used in PDMS microchips as a carrier for bioaffinity separation or of enzyme for catalysis.


Assuntos
Magnetismo , Técnicas Analíticas Microfluídicas , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Animais , Bovinos , Ensaio de Imunoadsorção Enzimática , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Soroalbumina Bovina/química
17.
Dalton Trans ; 43(27): 10462-70, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24626407

RESUMO

Two new intercalates of tris[4-(pyridin-4-yl)phenyl]amine (TPPA) with zirconium hydrogen phosphate and zirconium 4-sulfophenylphosphonate having formulae Zr(HPO4)2·0.21(C33H24N4)·2.5H2O and Zr(HO3SC6H4PO3)(1.3)(C6H5PO3)(0.7)·0.35(C33H24N4)·2.5H2O were prepared and characterized by thermogravimetry, IR spectroscopy, and powder X-ray diffraction. The TPPA molecule has been selected as a model tripodal push-pull system with three peripheral basic centers that may undergo protonation. Their protonation/quaternization afforded HTPPA/MeTPPA molecules with enhanced intramolecular charge-transfer (ICT), which has been documented by electrochemical measurements, UV-Vis spectra and calculated properties such as the HOMO/LUMO levels and the first and second hyperpolarizabilities. Intercalation of TPPA into layered zirconium hydrogen phosphate and zirconium 4-sulfophenylphosphonate led to its significant organization and protonation as shown by the IR spectra. From the powder X-ray data we can deduce that the TPPA molecules are placed in the interlayer space of both hosts by anchoring two peripheral nitrogen atoms to one host layer and the opposite pyridine-4-yl terminus to the other neighboring host layer. In zirconium 4-sulfophenylphosphonate, the TPPA molecules are oriented perpendicularly, while in zirconium phosphate these molecules are slanted with respect to the layers of the host. On dehydration by heating, the interlayer distance of the intercalate decreases, which indicates a further slanting of the TPPA molecules. It follows from the UV-Vis spectra that TPPA is present in both intercalates in an equilibrium of protonated and non-protonated forms. The described materials represent the first case when a tripodal push-pull system was incorporated into a system with restricted geometry with the aim to influence its optical properties.

18.
Mater Sci Eng C Mater Biol Appl ; 33(4): 1963-8, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23498219

RESUMO

In this work we evaluate the applicability of different atomic force microscopy (AFM) modes, such as Phase Shift Imaging, Atomic Force Acoustic Microscopy (AFAM) and Force Spectroscopy, for mapping of the distribution pattern of low-molecular-weight biomimetic groups on polymer biomaterial surfaces. Patterns with either random or clustered spatial distribution of bioactive peptide group derived from fibronectin were prepared by surface deposition of functional block copolymer nano-colloids and grafted with RGDS peptide containing the sequence of amino acids arginine-glycine-aspartic acid-serine (conventionally labeled as RGDS) and carrying biotin as a tag. The biotin-tagged peptides were labeled with 40nm streptavidin-modified Au nanospheres. The peptide molecules were localized through the detection of bound Au nanospheres by AFM, and thus, the surface distribution of peptides was revealed. AFM techniques capable of monitoring local mechanical properties of the surface were proved to be the most efficient for identification of Au nano-markers. The efficiency was successfully demonstrated on two different patterns, i.e. random and clustered distribution of RGDS peptides on structured surface of the polymer biomaterial.


Assuntos
Fibronectinas/química , Fenômenos Mecânicos , Microscopia de Força Atômica/métodos , Ouro , Nanosferas/ultraestrutura , Estreptavidina/química , Propriedades de Superfície
19.
Chemistry ; 19(6): 1877-81, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23297143

RESUMO

Put the right spin on it: Mixed monomeric organotin(IV) chalcogenides of the general formula L(2)Sn(2)EX(2) containing two terminal Sn-X (X = Se, Te) bonds were prepared and were tested as potential single-source precursors for the deposition of semiconducting thin films. Spin-coating deposition of [{2,6-(Me(2)NCH(2))(2)C(6)H(3)}SnSe](2)(µ-S), as the useful single-source precursor, provided amorphous Sn-S-Se semiconducting thin films.

20.
Mater Sci Eng C Mater Biol Appl ; 32(6): 1366-74, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24364933

RESUMO

In this paper, the treatment of poly-ε-caprolactone (PCL) nano/micro-mesh system by cryogenic grinding and subsequent characterization of obtained product is described. The PCL nano/micro-mesh layer submerged in appropriate liquid was cryogenically ground and obtained particles were characterized employing mainly laser diffraction and scanning electron microscopy (SEM). In the ground sample, different types of particles (fibrous particles, fibrous fragments, agglomerates with and without an internal fibrous structure, lamellae and nanoparticles) were identified, described and quantified. Parameters of cryogenic grinding (weight of sample, type of liquid medium, and influence of sample storage) were optimized to maximize the yield of particles with desired features. The potential of the system for cell scaffolding was demonstrated by cultivation of 3T3 fibroblasts on the produced microparticles.


Assuntos
Nanopartículas/química , Poliésteres/química , Células 3T3 , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura/métodos , Poliésteres/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...