Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 33(35): e2100047, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34247417

RESUMO

Biomaterials capable of transmitting signals over longer distances than those in rigid electronics can open new opportunities for humanity by mimicking the way tissues propagate information. For seamless mirroring of the human body, they also have to display conformability to its curvilinear architecture, as well as, reproducing native-like mechanical and electrical properties combined with the ability to self-heal on demand like native organs and tissues. Along these lines, a multifunctional composite is developed by mixing silk fibroin and reduced graphene oxide. The material is coined "CareGum" and capitalizes on a phenolic glue to facilitate sacrificial and hierarchical hydrogen bonds. The hierarchal bonding scheme gives rise to high mechanical toughness, record-breaking elongation capacity of ≈25 000%, excellent conformability to arbitrary and complex surfaces, 3D printability, a tenfold increase in electrical conductivity, and a fourfold increase in Young's modulus compared to its pristine counterpart. By taking advantage of these unique properties, a durable and self-healing bionic glove is developed for hand gesture sensing and sign translation. Indeed, CareGum is a new advanced material with promising applications in fields like cyborganics, bionics, soft robotics, human-machine interfaces, 3D-printed electronics, and flexible bioelectronics.


Assuntos
Hidrogéis , Seda , Grafite
2.
ACS Appl Mater Interfaces ; 12(42): 48027-48039, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33035422

RESUMO

Today's consumer electronics are made from nonrenewable and toxic components. They are also rigid, bulky, and manufactured in an energy-inefficient manner via CO2-generating routes. Though petroleum-based polymers such as polyethylene terephthalate and polyethylene naphthalate can address the rigidity issue, they have a large carbon footprint and generate harmful waste. Scalable routes for manufacturing electronics that are both flexible and ecofriendly (Fleco) could address the challenges in the field. Ideally, such substrates must incorporate into electronics without compromising device performance. In this work, we demonstrate that a new type of wood-based [nanocellulose (NC)] material made via nanosilicate (NS) reinforcement can yield flexible electronics that can bend and roll without loss of electrical function. Specifically, the NSs interact electrostatically with NC to reinforce thermal and mechanical properties. For instance, films containing 34 wt % of NS displayed an increased young's modulus (1.5 times), thermal stability (290 → 310 °C), and a low coefficient of thermal expansion (40 ppm/K). These films can also easily be separated and renewed into new devices through simple and low-energy processes. Moreover, we used very cheap and environmentally friendly NC from American Value Added Pulping (AVAP) technology, American Process, and therefore, the manufacturing cost of our NS-reinforced NC paper is much cheaper ($0.016 per dm-2) than that of conventional NC-based substrates. Looking forward, the methodology highlighted herein is highly attractive as it can unlock the secrets of Fleco electronics and transform otherwise bulky, rigid, and "difficult-to-process" rigid circuits into more aesthetic and flexible ones while simultaneously bringing relief to an already-overburdened ecosystem.

3.
Adv Sci (Weinh) ; 6(5): 1801241, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886791

RESUMO

Proteins present an ecofriendly alternative to many of the synthetic components currently used in electronics. They can therefore in combination with flexibility and electroactivity uncover a range of new opportunities in the field of flexible and green electronics. In this study, silk-based ionic conductors are turned into stable thin films by embedding them with 2D nanoclay platelets. More specifically, this material is utilized to develop a flexible and ecofriendly motion-sensitive touchscreen device. The display-like sensor can readily transmit light, is easy to recycle and can monitor the motion of almost any part of the human body. It also displays a significantly lower sheet resistance during bending and stretching regimes than the values typically reported for conventional metallic-based conductors, and remains fully operational after mechanical endurance testing. Moreover, it can operate at high frequencies in the kilohertz (kHz) range under both normal and bending modes. Notably, our new technology is available through a simple one-step manufacturing technique and can therefore easily be extended to large-scale fabrication of electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...