Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 7(8): e519, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37600238

RESUMO

With ongoing climate change and the increase in extreme weather events, especially droughts, the challenge of maintaining food security is becoming ever greater. Locally adapted landraces of crops represent a valuable source of adaptation to stressful environments. In the light of future droughts-both by altered soil water supply and increasing atmospheric water demand (vapor pressure deficit [VPD])-plants need to improve their water efficiency. To do so, plants can enhance their access to soil water by improving rhizosphere hydraulic conductivity via the exudation of mucilage. Furthermore, plants can reduce transpirational water loss via stomatal regulation. Although the role of mucilage and stomata regulation on plant water management have been extensively studied, little is known about a possible coordination between root mucilage properties and stomatal sensitivity as well as abiotic drivers shaping the development of drought resistant trait suits within landraces. Mucilage properties and stomatal sensitivity of eight Mexican landraces of Zea mays in contrast with one inbred line were first quantified under controlled conditions and second related to water demand and supply at their respective site of origin. Mucilage physical properties-namely, viscosity, contact angle, and surface tension-differed between the investigated maize varieties. We found strong influences of precipitation seasonality, thus plant water availability, on mucilage production (R 2 = .88, p < .01) and mucilage viscosity (R 2 = .93, p < .01). Further, stomatal sensitivity to increased atmospheric water demand was related to mucilage viscosity and contact angle, both of which are crucial in determining mucilage's water repellent, thus maladaptive, behavior upon soil drying. The identification of landraces with pre-adapted suitable trait sets with regard to drought resistance is of utmost importance, for example, trait combinations such as exhibited in one of the here investigated landraces. Our results suggest a strong environmental selective force of seasonality in plant water availability on mucilage properties as well as regulatory stomatal effects to avoid mucilage's maladaptive potential upon drying and likely delay critical levels of hydraulic dysfunction. By this, landraces from highly seasonal climates may exhibit beneficial mucilage and stomatal traits to prolong plant functioning under edaphic drought. These findings may help breeders to efficiently screen for local landraces with pre-adaptations to drought to ultimately increase crop yield resistance under future climatic variability.

2.
Biopolymers ; 114(8): e23561, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37435955

RESUMO

Mucilage, a polysaccharide-containing hydrogel, is hypothesized to play a key role in the rhizosphere as a self-organized system because it may vary its supramolecular structure with changes in the surrounding solution. However, there is currently limited research on how these changes are reflected in the physical properties of real mucilage. This study examines the role of solutes in maize root, wheat root, chia seed, and flax seed mucilage in relation to their physical properties. Two purification methods, dialysis and ethanol precipitation, were applied to determine the purification yield, cation content, pH, electrical conductivity, surface tension, viscosity, transverse 1 H relaxation time, and contact angle after drying of mucilage before and after purification. The two seed mucilage types contain more polar polymers that are connected to larger assemblies via multivalent cation crosslinks, resulting in a denser network. This is reflected in higher viscosity and water retention ability compared to root mucilage. Seed mucilage also contains fewer surfactants, making them better wettable after drying compared to the two root mucilage types. The root mucilage types, on the other hand, contain smaller polymers or polymer assemblies and become less wettable after drying. However, wettability not only depends on the amount of surfactants but also on their mobility, as well as the strength and mesh size of the network structure. The changes in physical properties and cation composition observed after ethanol precipitation and dialysis suggest that the polymer network of seed mucilage is more stable and specialized in protecting the seeds from unfavorable environmental conditions. In contrast, root mucilage is characterized by fewer cationic interactions and its network relies more on hydrophobic interactions. This allows root mucilage to be more flexible in responding to changing environmental conditions, facilitating nutrient and water exchange between root surfaces and the rhizosphere soil.


Assuntos
Rizosfera , Sementes , Sementes/química , Extratos Vegetais , Polissacarídeos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...