Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 13(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35735833

RESUMO

Host range confirmation of invasive hemipterans relies on the evaluation of plant susceptibility though greenhouse or field trials, which are inefficient and time-consuming. When the green industry faces the fast-spreading threat of invasive pests such as crapemyrtle bark scale (Acanthococcus lagerstroemiae), it is imperative to timely identify potential host plants and evaluate plant resistance/susceptibility to pest infestation. In this study, we developed an alternative technology to complement the conventional host confirmation methods. We used electrical penetration graph (EPG) based technology to monitor the A. lagerstroemiae stylet-tip position when it was probing in different plant tissues in real-time. The frequency and relative amplitude of insect EPG waveforms were extracted by an R programming-based software written to generate eleven EPG parameters for comparative analysis between plant species. The results demonstrated that the occurrences of phloem phase and xylem phase offered conclusive evidence for host plant evaluation. Furthermore, parameters including the percentage of insects capable of accessing phloem tissue, time duration spent on initiating phloem phase and ingesting phloem sap, provided insight into why host plant susceptibility differs among similar plant species. In summary, this study developed a novel real-time diagnostic tool for quick A. lagerstroemiae host confirmation, which laid the essential foundation for effective pest management.

2.
Plant Dis ; 106(3): 818-827, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34645302

RESUMO

Rose rosette disease (RRD) caused by rose rosette emaravirus (RRV) is a major issue in the U.S. rose industry with no effective method for its management. This study evaluated the effect of foliar application of acibenzolar-S-methyl (ASM), a plant systemic acquired resistance inducer, in reducing RRD disease severity on Rosa species cv. Radtkopink ('Pink Double Knock Out') under greenhouse conditions, and the effect of ASM on plant growth under commercial nursery production conditions. ASM at 50- or 100-mg/liter concentrations at weekly intervals significantly reduced RRD severity compared with the untreated control in two of the three greenhouse trials (P < 0.05). The plants in these trials were subsequently pruned and observed for symptoms, which further indicated that application of ASM at 50- or 100-mg/liter concentrations lowered disease severity compared with the untreated control (P < 0.05) in these two trials. Plants treated with ASM at 50- or 100-mg/liter concentrations had delayed incidence of RRD compared with the nontreated controls. Plants treated with ASM at the 50- or 100-mg/liter rate in all three trials either did not have RRV present or the virus was present in fewer leaf samples than untreated controls as indicated by quantitative reverse transcription PCR analysis. Overall, plants treated with ASM at the 50-mg/liter concentration had 36 to 43% reduced RRD incidence compared with the water control. The treatment of two cultivars of rose, 'Radtkopink' and 'Meijocos' ('Pink Drift'), with weekly foliar applications of ASM at the three rates (0.5, 0.75, and 1.0 oz/A) indicated that ASM had no negative effect on flowering or plant growth at even the highest rate of application.


Assuntos
Vírus de RNA , Tiadiazóis , Doenças das Plantas/prevenção & controle , Folhas de Planta
3.
Insects ; 12(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374734

RESUMO

Crapemyrtle bark scale (CMBS, Acanthococcus lagerstroemiae), an invasive polyphagous sap-sucking hemipteran, has spread across 14 states of the United States since 2004. The infestation of CMBS has negatively impacted the flowering of ornamental plants and even the fruiting of some crops. Host identification is critical for determining potential risks in ecosystems and industries and helps develop strategic management. A host confirmation test was performed over 25 weeks using six Lagerstroemia species (L. caudata, L. fauriei 'Kiowa', L. indica 'Dynamite', L. limii, L. speciosa, and L. subcostata) and California loosestrife (Lythrum californicum). The 25-week observations confirmed all tested plants as the hosts. The repeated measures of analysis of variance (ANOVA; Tukey's HSD, α = 0.05) indicated that the average number of CMBS females differed significantly between L. limii and L. speciosa. The highest number of the females observed on L. limii was 576 ± 25 (mean ± SE) at 17 weeks after inoculation (WAI), while the highest number was 57 ± 15 on L. speciosa at 19 WAI. In addition, L. subcostata and L. speciosa had significantly high and low numbers of males, respectively, among the Lagerstroemia species. Our results suggest that L. speciosa could be incorporated in developing new cultivars with low CMBS suitability.

4.
Insects ; 11(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605244

RESUMO

Crapemyrtle bark scale (CMBS; Acanthococcus lagerstroemiae) is an exotic pest species that causes aesthetic and economic damage to crapemyrtles and poses potential threats to other horticultural crops in the United States. Although previous studies reported the infestation of CMBS on several alternative hosts across multiple families in Asia, its potential threats to other documented alternative hosts remain elusive and yet to be confirmed. In this study, feeding preference studies of CMBS were conducted on forty-nine plant species and cultivars in 2016 and 2019, in order to gain insight into the expansion of CMBS distribution in the United States, as well as other regions of the world. The infestations of CMBS were confirmed on apple (Malus domestica), Chaenomeles speciosa, Disopyros rhombifolia, Heimia salicifolia, Lagerstroemia 'Spiced Plum', M. angustifolia, and twelve out of thirty-five pomegranate cultivars. However, the levels of CMBS infestation on these test plant hosts in this study is very low compared to Lagerstroemia, and may not cause significant damage. No sign of CMBS infestation was observed on Rubus 'Arapaho', R. 'Navaho', R. idaeus 'Dorman Red', R. fruticosus, B. microphylla var. koreana × B. sempervirens, B. harlandii, or D. virginiana.

5.
J Virol Methods ; 247: 81-90, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28583856

RESUMO

Rose rosette disease, caused by Rose rosette virus (RRV; genus Emaravirus) is a major threat to the rose industry in the U.S. The only strategy currently available for disease management is early detection and eradication of the infected plants, thereby limiting its potential spread. Current RT-PCR based diagnostic methods for RRV are time consuming and are inconsistent in detecting the virus from symptomatic plants. Real-time RT-qPCR assay is highly sensitive for detection of RRV, but it is expensive and requires well-equipped laboratories. Both the RT-PCR and RT-qPCR cannot be used in a field-based testing for RRV. Hence a novel probe based, isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA) assay, using primer/probe designed based on the nucleocapsid gene of the RRV has been developed. The assay is highly specific and did not give a positive reaction to other viruses infecting roses belonging to both inclusive and exclusive genus. Dilution assays using the in vitro transcript showed that the primer/probe set is highly sensitive, with a detection limit of 1 fg/µl. In addition, a rapid technique for the extraction of viral RNA (<5min) has been standardized from RRV infected tissue sources, using PBS-T buffer (pH 7.4), which facilitates the virus adsorption onto the PCR tubes at 4°C for 2min, followed by denaturation to release the RNA. RT-exoRPA analysis of the infected plants using the primer/probe indicated that the virus could be detected from leaves, stems, petals, pollen, primary roots and secondary roots. In addition, the assay was efficiently used in the diagnosis of RRV from different rose varieties, collected from different states in the U.S. The entire process, including the extraction can be completed in 25min, with less sophisticated equipments. The developed assay can be used with high efficiency in large scale field testing for rapid detection of RRV in commercial nurseries and landscapes.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , RNA Viral/análise , Rosa/virologia , Primers do DNA/genética , Nepovirus , Nucleocapsídeo/genética , Sondas de Oligonucleotídeos/genética , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , Sensibilidade e Especificidade , Temperatura , Fatores de Tempo , Estados Unidos
6.
J Virol Methods ; 240: 78-84, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27915036

RESUMO

Rose rosette disease caused by Rose rosette virus (RRV; genus Emaravirus) is the most economically relevant disease of Knock Out® series roses in the U.S. As there are no effective chemical control options for the disease, the most critical disease management strategies include the use of virus free clean plants for propagation and early detection and destruction of infected plants. The current diagnostic techniques for RRV including end-point reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR (RT-qPCR) are highly sensitive, but limited to diagnostic labs with the equipment and expertise; and is time consuming. To address this limitation, an isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) assay based on multiple gene targets for specific detection of RRV was developed. The assay is highly specific and did not cross react with other viruses belonging to the inclusive and exclusive genus. Dilution assays using the in vitro transcripts showed that the primer sets designed (RPA-267, RPA-131, and RPA-321) are highly sensitive, consistently detecting RRV with a detection limit of 1fg/µL. Testing of the infected plants using the primer sets indicated that the virus could be detected from leaves, stems and petals of roses. The primer pair RPA-267 produced 100% positive detection of the virus from infected leaf tissues, while primer set RPA-131 produced 100% detection from stems and petals. The primer set RPA-321 produced 83%, 87.5% and 75% positive detection from leaves, petals and stem tissues, respectively. In addition, the assay has been efficiently used in the detection of RRV infecting Knock Out® roses, collected from different states in the U.S. The assay can be completed in 20min as compared to the end-point RT-PCR assay (3-4h) and RT-qPCR (1.5h). The RT-RPA assay is reliable, rapid, highly sensitive, and can be easily used in diagnostic laboratories for detection of RRV with no need for any special equipment.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Rosa/virologia , Proteínas Virais/genética , Primers do DNA , Flores/virologia , Folhas de Planta/virologia , Caules de Planta/virologia , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Recombinases/genética , Transcrição Reversa , Sensibilidade e Especificidade , Temperatura
7.
J Virol Methods ; 235: 41-50, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27210549

RESUMO

Rose rosette virus (RRV), belonging to the genus Emaravirus, is a highly destructive pathogen that causes rose rosette disease. The disease is a major concern for the rose industry in the U.S. due to the lack of highly sensitive methods for early detection of RRV. This is critical, as early identification of the infected plants and eradication is necessary in minimizing the risks associated with the spread of the disease. A highly reliable, specific and sensitive detection assay is thus required to test and confirm the presence of RRV in suspected plant samples. In this study a TaqMan real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for the detection of RRV from infected roses, utilizing multiple gene targets. Four pairs of primers and probes; two of them (RRV_2-1 and RRV_2-2) based on the consensus sequences of the glycoprotein gene (RNA2) and the other two (RRV_3-2 and RRV_3-5) based on the nucleocapsid gene (RNA3) were designed. The specificity of the primers and probes was evaluated against other representative viruses infecting roses, belonging to the genera Alfamovirus, Cucumovirus, Ilarvirus, Nepovirus, Tobamovirus, and Tospovirus and one Emaravirus (Wheat mosaic virus). Dilution assays using the in vitro transcripts (spiked with total RNA from healthy plants, and non-spiked) showed that all the primers and probes are highly sensitive in consistently detecting RRV with a detection limit of 1 fg. Testing of the infected plants over a period of time (three times in monthly intervals) indicated high reproducibility, with the primer/probe RRV_3-5 showing 100% positive detection, while RRV_2-1, RRV_2-2 and RRV_3-2 showed 90% positive detection. The developed real-time RT-PCR assay is reliable, highly sensitive, and can be easily used in diagnostic laboratories for testing and confirmation of RRV.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rosa/virologia , Primers do DNA , DNA Complementar , Nucleocapsídeo/genética , Doenças das Plantas/prevenção & controle , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...