Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466457

RESUMO

The widespread use of disinfectants and antiseptics, and consequently their release into the environment, determines the relevance of studying their potential impact on the main producers of organic matter on the planet-photosynthetic organisms. The review examines the effects of some biguanides and quaternary ammonium compounds, octenidine, miramistin, chlorhexidine, and picloxidine, on the functioning of the photosynthetic apparatus of various organisms (Strakhovskaya et al. in Photosynth Res 147:197-209, 2021; Knox et al. in Photosynth Res 153:103, 2022; Paschenko et al. in Photosynth Res 155:93-105, 2023a, Photosynth Res 2023b). A common feature of these antiseptics is the combination of hydrophobic and hydrophilic regions in the molecules, the latter carrying a positive charge(s). The comparison of the results obtained with intact bacterial membrane vesicles (chromatophores) and purified pigment-protein complexes (photosystem II and I) of oxygenic organisms allows us to draw conclusions about the mechanisms of the cationic antiseptic action on the functional properties of the components of the photosynthetic apparatus.

2.
Photosynth Res ; 159(2-3): 241-251, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37480468

RESUMO

In this study, the effects of cationic antiseptics such as chlorhexidine, picloxidine, miramistin, and octenidine at concentrations up to 150 µM on fluorescence spectra and its lifetimes, as well as on light-induced electron transfer in protein-pigment complexes of photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 have been studied. In doing so, octenidine turned out to be the most "effective" in terms of its influence on the spectral and functional characteristics of PSI complexes. It has been shown that the rate of energy migration from short-wavelength forms of light-harvesting chlorophyll to long-wavelength ones slows down upon addition of octenidine to the PSI suspension. After photo-separation of charges between the primary electron donor P700 and the terminal iron-sulfur center(s) FA/FB, the rate of forward electron transfer from (FA/FB)- to the external medium slows down while the rate of charge recombination between reduced FA/FB- and photooxidized P700+ increases. The paper considers the possible causes of the observed action of the antiseptic.


Assuntos
Anti-Infecciosos Locais , Iminas , Piridinas , Synechocystis , Complexo de Proteína do Fotossistema I , Elétrons , Cátions
3.
Photosynth Res ; 155(1): 93-105, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335236

RESUMO

Herein, the effect of cationic antiseptics (chlorhexidine, picloxidine, miramistin, octenidine) on the initial processes of the delivery of light energy and its efficient use by the reaction centers in intact spinach photosystem II core complexes has been investigated. The characteristic effects-an increase in the fluorescence yield of light-harvesting pigments and a slowdown in the rate of energy migration in bacterial photosynthetic chromatophores has been recently demonstrated mainly in the presence of octenidine (Strakhovskaya et al., in Photosynth Res 147:197-209, 2021; Knox et al., in Photosynth Res, https://doi.org/10.1007/s11120-022-00909-8 , 2022). In this study, we also observed that in the presence of octenidine, the fluorescence intensity of photosystem II core complexes increases by 5-10 times, and the rate of energy migration from antennae to the reaction centers decreases by 3 times. In addition, with an increase in the concentration of this antiseptic, a new effect related to a shift of the spectrum, absorption and fluorescence to the short-wavelength region has been found. Similar effects were observed when detergent Triton X-100 was added to photosystem II samples. We concluded that the antiseptic primarily affects the structure of the internal light-harvesting antenna (CP43 and CP47), through which the excitation energy is delivered to the reaction center. As a result of such an impact, the chlorophyll molecules in this structure are destabilized and their optical and functional characteristics change.


Assuntos
Anti-Infecciosos Locais , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/química , Complexos de Proteínas Captadores de Luz/química , Clorofila/química , Espectrometria de Fluorescência
4.
Biochemistry (Mosc) ; 87(10): 1138-1148, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273882

RESUMO

Effect of dipyridamole (DIP) at concentrations up to 1 mM on fluorescent characteristics of light-harvesting complexes LH2 and LH1, as well as on conditions of photosynthetic electron transport chain in the bacterial chromatophores of Rba. sphaeroides was investigated. DIP was found to affect efficiency of energy transfer from the light-harvesting complex LH2 to the LH1-reaction center core complex and to produce the long-wavelength ("red") shift of the absorption band of light-harvesting bacteriochlorophyll molecules in the IR spectral region at 840-900 nm. This shift is associated with the membrane transition to the energized state. It was shown that DIP is able to reduce the photooxidized bacteriochlorophyll of the reaction center, which accelerated electron flow along the electron transport chain, thereby stimulating generation of the transmembrane potential on the chromatophore membrane. The results are important for clarifying possible mechanisms of DIP influence on the activity of membrane-bound functional proteins. In particular, they might be significant for interpreting numerous therapeutic effects of DIP.


Assuntos
Cromatóforos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Bacterioclorofilas/metabolismo , Dipiridamol/farmacologia , Dipiridamol/metabolismo , Transferência de Energia , Proteínas de Membrana/metabolismo , Cromatóforos/metabolismo , Proteínas de Bactérias/metabolismo
5.
Photosynth Res ; 153(1-2): 103-112, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35277801

RESUMO

Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine. The most pronounced changes in the intensity and lifetime of fluorescence were observed with the addition of miramistin and octenidine. At the same concentration of antiseptics, the increase in fluorescence intensity was 2-3 times higher than the increase in its lifetime. It is concluded that the addition of antiseptics decreases the efficiency of the energy migration LH1 → RC and increases the fluorescence rate constant kfl. We associate the latter with a change in the polarization of the microenvironment of bacteriochlorophyll molecules upon the addition of charged antiseptic molecules. A possible mechanism of antiseptic action on R. rubrum chromatophores is considered. This work is a continuation of the study of the effect of antiseptics on the energy transfer and fluorescence intensity in chromatophores of purple bacteria published earlier in Photosynthesis Research (Strakhovskaya et al. in Photosyn Res 147:197-209, 2021).


Assuntos
Anti-Infecciosos Locais , Cromatóforos , Complexo de Proteínas do Centro de Reação Fotossintética , Rhodospirillum rubrum , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Compostos de Benzalcônio , Clorexidina/metabolismo , Cromatóforos/metabolismo , Fluorescência , Iminas , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Piridinas , Rhodospirillum rubrum/metabolismo
6.
Photosynth Res ; 147(2): 197-209, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33389445

RESUMO

Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 µM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 µM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.


Assuntos
Anti-Infecciosos Locais/farmacologia , Cromatóforos Bacterianos/efeitos dos fármacos , Transferência de Energia/efeitos dos fármacos , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos dos fármacos , Rhodobacter sphaeroides/fisiologia , Cardiolipinas/química , Membrana Celular/efeitos dos fármacos , Cinética , Luz , Complexos de Proteínas Captadores de Luz/efeitos dos fármacos , Fosfatidilgliceróis/química , Fotossíntese/efeitos dos fármacos , Rhodobacter sphaeroides/química , Espectrometria de Fluorescência
7.
Photosynth Res ; 139(1-3): 441-448, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30353420

RESUMO

The dependence on temperature of tryptophan fluorescence lifetime in trimeric photosystem I (PSI) complexes from cyanobacteria Synechocystis sp. PCC 6803 during the heating of pre-frozen to - 180 °C in the dark or in the light-activated preparations has been studied. Fluorescence lifetime in samples frozen in the light was longer than in samples frozen in the dark. For samples in 65% glycerol at λreg = 335 nm and at 20 °C, the lifetime of components were as follows: τ1 ≈ 1.2 ns, τ2 ≈ 4.9 ns, and τ3 ≈ 20 ns. The contribution of the first component was negligible. To analyze the contribution of components 2 and 3 derived from frozen-thawed samples, two temperature ranges from - 180 to - 90 °C and above - 90 °C are considered. In doing so, the contributions of these components appear antiphase course to each other. The dependence on temperature of these contributions is explained by the influence of the microconformational protein dynamics on the tryptophan fluorescence lifetime. In the present work, a comparative analysis of temperature-dependent conformational dynamics and electron transfer in cyanobacterial PSI (Schlodder et al., in Biochemistry 37:9466-9476, 1998) and Rhodobacter sphaeroides reaction center complexes (Knox et al., in J Photochem Photobiol B 180:140-148, 2018) was also carried out.


Assuntos
Cianobactérias/metabolismo , Fluorescência , Luz , Complexo de Proteína do Fotossistema I/metabolismo , Triptofano/química , Cianobactérias/efeitos da radiação , Temperatura
8.
Photosynth Res ; 139(1-3): 295-305, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29948749

RESUMO

The effects of ultraviolet (UV) irradiation (up to 0.6 J/cm2) and heating (65 °C, 20 min) on the absorption spectra and electron transfer in dehydrated film samples of photosynthetic reaction centers (RCs) from purple bacterium Rhodobacter (Rb.) sphaeroides, as well as in hybrid structures consisting of RCs and quantum dots (QDs), have been studied. The samples were placed in organic matrices containing the stabilizers of protein structure-polyvinyl alcohol (PVA) and trehalose. UV irradiation led to partially irreversible oxidation of some RCs, as well as to transformation of some fraction of the bacteriochlorophyll (BChl) molecules into bacteriopheophytin (BPheo) molecules. In addition, UV irradiation causes degradation of some BChl molecules that is accompanied by formation of 3-acetyl-chlorophyll a molecules. Finally, UV irradiation destroys the RCs carotenoid molecules. The incorporation of RCs into organic matrices reduced pheophytinization. Trehalose was especially efficient in reducing the damage to the carotenoid and BChl molecules caused by UV irradiation. Hybrid films containing RC + QD were more stable to pheophytinization upon UV irradiation. However, the presence of QDs in films did not affect the processes of carotenoid destruction. The efficiency of the electronic excitation energy transfer from QD to P865 also did not change under UV irradiation. Heating led to dramatic destruction of the RCs structure and bacteriochlorins acquired the properties of unbound molecules. Trehalose provided strong protection against destruction of the RCs and hybrid (RC + QD) complexes.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Pontos Quânticos , Raios Ultravioleta , Calefação , Rhodobacter/metabolismo , Trealose/metabolismo
9.
J Photochem Photobiol B ; 180: 140-148, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29413697

RESUMO

The temperature dependencies of the rate of dark recombination of separated charges between the photoactive bacteriochlorophyll and the primary quinone acceptor (QA) in photosynthetic reaction centers (RCs) of the purple bacteria Rhodobacter sphaeroides (Rb. sphaeroides) were investigated. Measurements were performed in water-glycerol and trehalose environments after freezing to -180 °C in the dark and under actinic light with subsequent heating. Simultaneously, the RC tryptophanyl fluorescence lifetime in the spectral range between 323 and 348 nm was measured under these conditions. A correlation was found between the temperature dependencies of the functional and dynamic parameters of RCs in different solvent mixtures. For the first time, differences in the average fluorescence lifetime of tryptophanyl residues were measured between RCs frozen in the dark and in the actinic light. The obtained results can be explained by the RC transitions between different conformational states and the dynamic processes in the structure of the hydrogen bonds of RCs. We assumed that RCs exist in two main microconformations - "fast" and "slow", which are characterized by different rates of P+ and QA- recombination reactions. The "fast" conformation is induced in frozen RCs in the dark, while the "slow" conformation of RC occurs when the RC preparation is frozen under actinic light. An explanation of the temperature dependencies of tryptophan fluorescence lifetimes in RC proteins was made under the assumption that temperature changes affect mainly the electron transfer from the indole ring of the tryptophan molecule to the nearest amide or carboxyl groups.


Assuntos
Benzoquinonas/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Triptofano/química , Transporte de Elétrons , Ligação de Hidrogênio , Cinética , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Teoria Quântica , Espectrometria de Fluorescência , Temperatura , Triptofano/metabolismo
10.
Biochim Biophys Acta ; 1817(8): 1399-406, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22366029

RESUMO

Transient absorption changes induced by excitation of isolated reaction centers (RCs) from Rhodobacter sphaeroides with 600nm laser pulses of 20fs (full width at half maximum) were monitored in the wavelength region of 420-560nm. The spectral features of the spectrum obtained are characteristic for an electrochromic band shift of the single carotenoid (Car) molecule spheroidene, which is an integral constituent of these RCs. This effect is assigned to an electrochromic bandshift of Car due to the local electric field of the dipole moment formed by electronic excitation of bacteriochlorophyll (BChl) molecule(s) in the neighborhood of Car. Based on the known distances between the pigments, the monomeric BChl (B(B)) in the inactive B-branch is inferred to dominate this effect. The excitation of B(B) at 600nm leads to a transition into the S(2) state (Q(x) band), which is followed by rapid internal conversion to the S(1) state (Q(y) band), thus leading to a change of strength and orientation of the dipole moment, i.e., of the electric field acting on the Car molecule. Therefore, the time course of the electrochromic bandshift reflects the rate of the internal conversion from S(2) to S(1) of B(B). The evaluation of the kinetics leads to a value of 30fs for this relaxation process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Bacterioclorofilas/química , Carotenoides/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Cinética
11.
Eur Biophys J ; 37(6): 843-50, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18286272

RESUMO

Singlet oxygen (1O2) generation in the reaction centers (RCs) of Rhodobacter sphaeroides wild type was characterized by luminescent emission in the near infrared region (time resolved transients and emission spectra) and quantified to have quantum yield of 0.03 +/- 0.005. 1O2 emission was measured as a function of temperature, ascorbate, urea and potassium ferricyanide concentrations and as a function of incubation time in H2O:D2O mixtures. 1O2 was shown to be affected by the RC dynamics and to originate from the reaction of molecular oxygen with two sources of triplets: photoactive dimer formed by singlet-triplet mixing and bacteriopheophytin formed by direct photoexcitation and intersystem crossing.


Assuntos
Modelos Biológicos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/fisiologia , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Simulação por Computador , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Rhodobacter sphaeroides/efeitos da radiação
12.
Eur Biophys J ; 36(6): 601-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17262223

RESUMO

Laser-induced temperature jump experiments were used for testing the rates of thermoinduced conformational transitions of reaction center (RC) complexes in chromatophores of Chromatium minutissimum. The thermoinduced transition of the macromolecular RC complex to a state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220-280 K accounts for tens of seconds with activation energy 0.166 eV/molecule. The rate of the thermoinduced transition in the cytochrome-RC complex was found to be three orders of magnitude slower than the rate of similar thermoinduced transition of the electron transfer reaction from the primary to secondary quinone acceptors studied in the preceding work (Chamorovsky et al. in Eur Biophys J 32:537-543, 2003). Parameters of thermoinduced activation of the electron transfer from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer are discussed in terms of cytochrome c docking onto the RC.


Assuntos
Bacterioclorofilas/fisiologia , Chromatium/fisiologia , Citocromos c/fisiologia , Lasers , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Dimerização , Transporte de Elétrons , Temperatura
13.
Bioelectrochemistry ; 61(1-2): 73-84, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14642912

RESUMO

Effects of environmental changes due to D(2)O/H(2)O substitution and cryosolvent addition on the energetics of the special pair and the rate constants of forward and back electron transfer reactions in the picosecond-nanosecond time domain have been studied in isolated reaction centers (RC) of the anaxogenic purple bacterium Rhodobacter sphaeroides. The following results were obtained: (i). replacement of H(2)O by D(2)O or addition of either 70% (v/v) glycerol or 35% (v/v) DMSO do not influence the absorption spectra; (ii). in marked contrast to this invariance of absorption, the maxima of fluorescence spectra are red shifted relative to control by 3.5, 6.8 and 14.5 nm for RCs suspended in glycerol, D(2)O or DMSO, respectively; (iii). D(2)O/H(2)O substitution or DMSO addition give rise to an increase of the time constants of charge separation (tau(e)), and Q(A)(-) formation (tau(Q)) by a factors of 2.5-3.1 and 1.7-2.5, respectively; (iv). addition of 70% glycerol is virtually without effect on the values of tau(e) and tau(Q); (v). the midpoint potential E(m) of P/P(+) is shifted by about 30 and 45 mV towards higher values by addition of 70% glycerol and 35% DMSO, respectively, but remains invariant to D(2)O/H(2)O exchange; and (vi). an additional fast component with tau(1)=0.5-0.8 ns in the kinetics of charge recombination P(+)H(A)(-)-->P*(P)H(A) emerges in RC suspensions modified either by D(2)O/H(2)O substitution or by DMSO treatment. The results have been analysed with special emphasis on the role of deformations of hydrogen bonds for the solvation mechanism of nonequilibrium states of cofactors. Reorientation of hydrogen bonds provides the major contribution of the very fast environmental response to excitation of the special pair P. The Gibbs standard free energy gap between 1P* and P(+)B(A)(-) due to solvation is estimated to be approximately 70, 59 and 48 meV for control, D(2)O- and DMSO-treated RC samples, respectively.


Assuntos
Bacterioclorofilas/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Bacterioclorofilas/metabolismo , Óxido de Deutério/química , Dimetil Sulfóxido/química , Transporte de Elétrons , Glicerol/química , Cinética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Solventes , Espectrometria de Fluorescência , Termodinâmica
14.
Eur Biophys J ; 32(6): 537-43, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12679860

RESUMO

Methods of laser-induced temperature jumps and fast freezing were used for testing the rates of thermoinduced conformational transitions of reaction center (RC) complexes in chromatophores and isolated RC preparations of various photosynthesizing purple bacteria. An electron transfer reaction from primary to secondary quinone acceptors was used as a probe of electron transport efficiency. The thermoinduced transition of the acceptor complex to the conformational state facilitating electron transfer to the secondary quinone acceptor was studied. To investigate the dynamics of spontaneous decay of the RC state induced by the thermal pulse, the thermal pulse was applied either before or during photoinduced activation of electron transport reactions in the RC acceptor complex. The maximum effect was observed if the thermal pulse was applied against the background of steady-state photoactivation of the RC. It was shown that neither the characteristic time of the thermoinduced transition within the temperature range 233-253 K nor the characteristic time of spontaneous decay of this state at 253 K exceeded several tens of milliseconds. Independent support of the estimates was obtained from experiments with varied cooling rates of the samples tested.


Assuntos
Benzoquinonas/metabolismo , Transporte de Elétrons/efeitos da radiação , Congelamento , Temperatura Alta , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Benzoquinonas/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/química , Conformação Proteica/efeitos da radiação , Doses de Radiação , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/efeitos da radiação , Rhodospirillum rubrum/metabolismo , Rhodospirillum rubrum/efeitos da radiação , Relação Estrutura-Atividade , Temperatura
15.
Biophys J ; 84(2 Pt 1): 1146-60, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12547795

RESUMO

Experimental and theoretical results in support of nonlinear dynamic behavior of photosynthetic reaction centers under light-activated conditions are presented. Different conditions of light adaptation allow for preparation of reaction centers in either of two different conformational states. These states were detected both by short actinic flashes and by the switching of the actinic illumination level between different stationary state values. In the second method, the equilibration kinetics of reaction centers isolated from Rhodobacter sphaeroides were shown to be inherently biphasic. The fast and slow equilibration kinetics are shown to correspond to electron transfer (charge separation) at a fixed structure and to combined electron-conformational transitions governed by the bounded diffusion along the potential surface, respectively. The primary donor recovery kinetics after an actinic flash revealed a pronounced dependence on the time interval (deltat) between cessation of a lengthy preillumination of a sample and the actinic flash. A pronounced slow relaxation component with a decay half time of more than 50 s was measured for deltat > 10 s. This component corresponds to charge recombination in reaction centers for which light-induced structural changes have not relaxed completely before the flash. The amplitude of this component depended on the conditions of the sample preparation, specifically on the type of detergent used in the preparation. The redox potential parameters as well as the structural diffusion constants were estimated for samples prepared in different ways.


Assuntos
Detergentes/química , Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Adaptação Fisiológica , Escuridão , Homeostase , Cinética , Luz , Substâncias Macromoleculares , Modelos Químicos , Dinâmica não Linear , Oxirredução , Conformação Proteica/efeitos da radiação , Rhodobacter/química , Rhodobacter/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...