Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Macromolecules ; 56(16): 6426-6435, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37637307

RESUMO

In situ small-angle X-ray scattering (SAXS) is a powerful technique for characterizing block-copolymer nano-object formation during polymerization-induced self-assembly. To work effectively in situ, it requires high intensity X-rays which enable the short acquisition times required for real-time measurements. However, routine access to synchrotron X-ray sources is expensive and highly competitive. Flow reactors provide an opportunity to obtain temporal resolution by operating at a consistent flow rate. Here, we equip a flow-reactor with an X-ray transparent flow-cell at the outlet which facilitates the use of a low-flux laboratory SAXS instrument for in situ monitoring. The formation and morphological evolution of spherical block copolymer nano-objects was characterized during reversible addition fragmentation chain transfer polymerization of diacetone acrylamide in the presence of a series of poly(dimethylacrylamide) (PDMAm) macromolecular chain transfer agents with varying degrees of polymerization. SAXS analysis indicated that during the polymerization, highly solvated, loosely defined aggregates form after approximately 100 s, followed by expulsion of solvent to form well-defined spherical particles with PDAAm cores and PDMAm stabilizer chains, which then grow as the polymerization proceeds. Analysis also indicates that the aggregation number (Nagg) increases during the reaction, likely due to collisions between swollen, growing nanoparticles. In situ SAXS conducted on PISA syntheses using different PDMAm DPs indicated a varying conformation of the chains in the particle cores, from collapsed chains for PDMAm47 to extended chains for PDMAm143. At high conversion, the final Nagg decreased as a function of increasing PDMAm DP, indicating increased steric stabilization afforded by the longer chains which is reflected by a decrease in both core diameter (from SAXS) and hydrodynamic diameter (from DLS) for a constant core DP of 400.

3.
Macromolecules ; 56(4): 1581-1591, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36874531

RESUMO

The exploitation of computational techniques to predict the outcome of chemical reactions is becoming commonplace, enabling a reduction in the number of physical experiments required to optimize a reaction. Here, we adapt and combine models for polymerization kinetics and molar mass dispersity as a function of conversion for reversible addition fragmentation chain transfer (RAFT) solution polymerization, including the introduction of a novel expression accounting for termination. A flow reactor operating under isothermal conditions was used to experimentally validate the models for the RAFT polymerization of dimethyl acrylamide with an additional term to accommodate the effect of residence time distribution. Further validation is conducted in a batch reactor, where a previously recorded in situ temperature monitoring provides the ability to model the system under more representative batch conditions, accounting for slow heat transfer and the observed exotherm. The model also shows agreement with several literature examples of the RAFT polymerization of acrylamide and acrylate monomers in batch reactors. In principle, the model not only provides a tool for polymer chemists to estimate ideal conditions for a polymerization, but it can also automatically define the initial parameter space for exploration by computationally controlled reactor platforms provided a reliable estimation of rate constants is available. The model is compiled into an easily accessible application to enable simulation of RAFT polymerization of several monomers.

4.
ACS Appl Polym Mater ; 3(7): 3438-3445, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34308358

RESUMO

Epoxy resins are used widely as protective coatings, in a wide range of harsh chemical environments. This work explores the influence of subtle structural variation in both epoxy and amine monomers upon chemical performance of cured networks, whether changing molecular geometry, the nature of the chemistry, or the mass between cross-linking reactive groups. To achieve this, four industrially relevant epoxy resins (two based on bisphenol A-Epikote 828 (E828) and Dow Epoxy Resin 332 (DER 332)-and two based on bisphenol F-Dow Epoxy Resin 354 (DER 354) and Araldite PY306 (PY306)) and the isomerically pure para-para-diglycidyl ether of bisphenol F (ppDGEBF) were used to explore variation caused by epoxy monomer variation. Four similar amines (meta-xylylenediamine (MXDA), para-xylylenediamine (PXDA), 1,3-bis(aminomethyl)cyclohexane (1,3-BAC), 1,4-bis(aminomethyl)cyclohexane (1,4-BAC)) were used to explore any variations caused by regioisomerism and aromaticity. Bisphenol F-based resins were found to outperform bisphenol A-based analogues, and chain extension within the epoxy component was found to be detrimental to performance. For amines, 1,3-substitution (vs 1,4) and aromaticity were both found to be beneficial to chemical performance.

5.
Macromolecules ; 52(18): 6861-6867, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32051651

RESUMO

The previously ignored or unreported impact of regiosomerism within diglycidyl ether of bisphenol F (DGEBF) on its network properties is presented. Routes to the isomers of DGEBF were explored: high-performance liquid chromatography showed good separation of the three isomers [para-para-DGEBF (ppDGEBF), para-ortho-DGEBF (poDGEBF), and ortho-ortho-DGEBF (ooDGEBF)] with small yields; column chromatography gave good separation of pp- + po- from oo-DGEBF but pp-/po- separation was not achieved. Synthesis was optimized to crude yields of 76% for pp-; 87% for po-, and 86% for oo-. Subsequently, crosslinked networks were prepared with meta-xylylenediamine. With increasing ortho content, degradation of chemical resistance and an inherent weakening of the network was observed, that is, glass transition temperature (T g), beta transition temperature (T ß), density, crosslink density, and the desorption diffusion coefficient decreased, whereas sorption diffusion coefficient and ultimate solvent uptake increased. This clearly shows that a subtle chemical structure change can significantly impact network performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...