Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3595, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739121

RESUMO

Differentiation of multipotent stem cells into mature cells is fundamental for development and homeostasis of mammalian tissues, and requires the coordinated induction of lineage-specific transcriptional programs and cell cycle withdrawal. To understand the underlying regulatory mechanisms of this fundamental process, we investigated how the tissue-specific transcription factors, CEBPA and CEBPE, coordinate cell cycle exit and lineage-specification in vivo during granulocytic differentiation. We demonstrate that CEBPA promotes lineage-specification by launching an enhancer-primed differentiation program and direct activation of CEBPE expression. Subsequently, CEBPE confers promoter-driven cell cycle exit by sequential repression of MYC target gene expression at the G1/S transition and E2F-meditated G2/M gene expression, as well as by the up-regulation of Cdk1/2/4 inhibitors. Following cell cycle exit, CEBPE unleashes the CEBPA-primed differentiation program to generate mature granulocytes. These findings highlight how tissue-specific transcription factors coordinate cell cycle exit with differentiation through the use of distinct gene regulatory elements.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Ciclo Celular , Diferenciação Celular/genética , Granulócitos/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Cell Rep ; 29(9): 2756-2769.e6, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775043

RESUMO

B cell development depends on the coordinated expression and cooperation of several transcription factors. Here we show that the transcription factor ETS-related gene (ERG) is crucial for normal B cell development and that its deletion results in a substantial loss of bone marrow B cell progenitors and peripheral B cells, as well as a skewing of splenic B cell populations. We find that ERG-deficient B lineage cells exhibit an early developmental block at the pre-B cell stage and proliferate less. The cells fail to express the immunoglobulin heavy chain due to inefficient V-to-DJ recombination, and cells that undergo recombination display a strong bias against incorporation of distal V gene segments. Furthermore, antisense transcription at PAX5-activated intergenic repeat (PAIR) elements, located in the distal region of the Igh locus, depends on ERG. These findings show that ERG serves as a critical regulator of B cell development by ensuring efficient and balanced V-to-DJ recombination.


Assuntos
Linfócitos B/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Humanos , Regulador Transcricional ERG/metabolismo
4.
Front Hum Neurosci ; 9: 553, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539094

RESUMO

"Truth" has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person's mental state, a phenomenon known as Theory of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in-group and out-group members. Participants were asked to be honest and were told that their evaluations would be made public. We found increased BOLD responses in the medial prefrontal cortex, bilateral anterior insula and precuneus when participants were asked to tell social truths compared to simple truths about another person. At the behavioral level, participants were slower at responding to social compared to simple questions about another person. These findings suggest that telling the truth is a nuanced cognitive operation that is dependent on the degree of mentalizing. Importantly, we show that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning.

5.
Genes Dev ; 29(18): 1915-29, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385962

RESUMO

The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors that serve to restrict HSC differentiation. In the present work, we identify ETS (E-twenty-six)-related gene (ERG) as a critical factor protecting HSCs from differentiation. Specifically, loss of Erg accelerates HSC differentiation by >20-fold, thus leading to rapid depletion of immunophenotypic and functional HSCs. Molecularly, we could demonstrate that ERG, in addition to promoting the expression of HSC self-renewal genes, also represses a group of MYC targets, thereby explaining why Erg loss closely mimics Myc overexpression. Consistently, the BET domain inhibitor CPI-203, known to repress Myc expression, confers a partial phenotypic rescue. In summary, ERG plays a critical role in coordinating the balance between self-renewal and differentiation of HSCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Hematopoéticas/citologia , Proteínas Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células da Medula Óssea/fisiologia , Adesão Celular/genética , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Células Cultivadas , Deleção de Genes , Camundongos , Proteínas Oncogênicas/genética , Fatores de Transcrição/genética , Regulador Transcricional ERG
6.
Soc Stud Sci ; 44(5): 701-21, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362830

RESUMO

This article is about a transdisciplinary project between the social, human and life sciences, and the felt experiences of the researchers involved. 'Transdisciplinary' and 'interdisciplinary' research-modes have been the subject of much attention lately--especially as they cross boundaries between the social/humanistic and natural sciences. However, there has been less attention, from within science and technology studies, to what it is actually like to participate in such a research-space. This article contributes to that literature through an empirical reflection on the progress of one collaborative and transdisciplinary project: a novel experiment in neuroscientific lie detection, entangling science and technology studies, literary studies, sociology, anthropology, clinical psychology and cognitive neuroscience. Its central argument is twofold: (1) that, in addition to ideal-type tropes of transdisciplinary conciliation or integration, such projects may also be organized around some more subterranean logics of ambivalence, reserve and critique; (2) that an account of the mundane ressentiment of collaboration allows for a more careful attention to the awkward forms of 'experimental politics' that may flow through, and indeed propel, collaborative work more broadly. Building on these claims, the article concludes with a suggestion that such subterranean logics may be indissociable from some forms of collaboration, and it proposes an ethic of 'equivocal speech' as a way to live with and through these kinds of transdisciplinary experiences.


Assuntos
Atitude , Estudos Interdisciplinares , Conhecimento , Neurociências , Política , Comportamento Cooperativo , Detecção de Mentiras , Sociologia
7.
Front Hum Neurosci ; 8: 149, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24744713

RESUMO

Recent neuroscience initiatives (including the E.U.'s Human Brain Project and the U.S.'s BRAIN Initiative) have reinvigorated discussions about the possibilities for transdisciplinary collaboration between the neurosciences, the social sciences, and the humanities. As STS scholars have argued for decades, however, such inter- and transdisciplinary collaborations are potentially fraught with tensions between researchers. This essay build on such claims by arguing that the tensions of transdisciplinary research also exist within researchers' own experiences of working between disciplines - a phenomenon that we call "disciplinary double consciousness" (DDC). Building on previous work that has characterized similar spaces (and especially on the Critical Neuroscience literature), we argue that "neuro-collaborations" inevitably engage researchers in DDC - a phenomenon that allows us to explore the useful dissonance that researchers can experience when working between a "home" discipline and a secondary discipline. Our case study is a five-year research project in functional magnetic resonance imaging (fMRI) lie detection involving a transdisciplinary research team made up of social scientists, a neuroscientist, and a humanist. In addition to theorizing neuro-collaborations from the inside-out, this essay presents practical suggestions for developing transdisciplinary infrastructures that could support future neuro-collaborations.

8.
Arch Toxicol ; 83(12): 1061-74, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19730820

RESUMO

Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overexpression, such as cell cycle disturbances, increased cell size, and overexpression of the S6 ribosomal protein. Cells overexpressing c-myc by 70% exhibited additional phenotypic changes typical of c-myc overexpression, such as increased histone H3 phosphorylation, and reduced adherence. Sorted cells also exhibited overexpression of the IGF-1R, and slightly elevated expression of the IR. Increased susceptibility to the mitogenic effect of insulin was seen in a small proportion of the sorted cells, and insulin was more effective in activating the p44/42 MAPK pathway, but not the PI3K pathway, in the sorted cells than in the nonsorted cell population. To our knowledge, this is the first in vitro system allowing functional coupling between mitogenic signaling by a well-defined growth factor and gradual overexpression of the normal, endogenous c-myc gene. Thus, our flow-sorting approach provides an alternative modeling of the receptor-mediated carcinogenic process, compared to the currently used approaches of recombinant constitutive or conditional overexpression of oncogenic transmembrane receptor tyrosine kinases or oncogenic transcription factors.


Assuntos
Adenocarcinoma/metabolismo , Citometria de Fluxo/métodos , Neoplasias Mamárias Animais/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Separação Celular , Feminino , Histonas/metabolismo , Insulina/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ratos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...