Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thorax ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331579

RESUMO

BACKGROUND: The lower airway microbiota in patients with chronic obstructive pulmonary disease (COPD) are likely altered compared with the microbiota in healthy individuals. Information on how the microbiota is affected by smoking, use of inhaled corticosteroids (ICS) and COPD severity is still scarce. METHODS: In the MicroCOPD Study, participant characteristics were obtained through standardised questionnaires and clinical measurements at a single centre from 2012 to 2015. Protected bronchoalveolar lavage samples from 97 patients with COPD and 97 controls were paired-end sequenced with the Illumina MiSeq System. Data were analysed in QIIME 2 and R. RESULTS: Alpha-diversity was lower in patients with COPD than controls (Pielou evenness: COPD=0.76, control=0.80, p=0.004; Shannon entropy: COPD=3.98, control=4.34, p=0.01). Beta-diversity differed with smoking only in the COPD cohort (weighted UniFrac: permutational analysis of variance R2=0.04, p=0.03). Nine genera were differentially abundant between COPD and controls. Genera enriched in COPD belonged to the Firmicutes phylum. Pack years were linked to differential abundance of taxa in controls only (ANCOM-BC (Analysis of Compositions of Microbiomes with Bias Correction) log-fold difference/q-values: Haemophilus -0.05/0.048; Lachnoanaerobaculum -0.04/0.03). Oribacterium was absent in smoking patients with COPD compared with non-smoking patients (ANCOM-BC log-fold difference/q-values: -1.46/0.03). We found no associations between the microbiota and COPD severity or ICS. CONCLUSION: The lower airway microbiota is equal in richness in patients with COPD to controls, but less even. Genera from the Firmicutes phylum thrive particularly in COPD airways. Smoking has different effects on diversity and taxonomic abundance in patients with COPD compared with controls. COPD severity and ICS use were not linked to the lower airway microbiota.

2.
Microbiome ; 10(1): 175, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258251

RESUMO

BACKGROUND: The role of the pulmonary microbiome in sarcoidosis is unknown. The objectives of this study were the following: (1) examine whether the pulmonary fungal and bacterial microbiota differed in patients with sarcoidosis compared with controls; (2) examine whether there was an association between the microbiota and levels of the antimicrobial peptides (AMPs) in protected bronchoalveolar lavage (PBAL). METHODS: Thirty-five sarcoidosis patients and 35 healthy controls underwent bronchoscopy and were sampled with oral wash (OW), protected BAL (PBAL), and left protected sterile brushes (LPSB). The fungal ITS1 region and the V3V4 region of the bacterial 16S rRNA gene were sequenced. Bioinformatic analyses were performed with QIIME 2. The AMPs secretory leucocyte protease inhibitor (SLPI) and human beta defensins 1 and 2 (hBD-1 and hBD-2), were measured in PBAL by enzyme-linked immunosorbent assay (ELISA). RESULTS: Aspergillus dominated the PBAL samples in sarcoidosis. Differences in bacterial taxonomy were minor. There was no significant difference in fungal alpha diversity between sarcoidosis and controls, but the bacterial alpha diversity in sarcoidosis was significantly lower in OW (p = 0.047) and PBAL (p = 0.03) compared with controls. The beta diversity for sarcoidosis compared with controls differed for both fungi and bacteria. AMP levels were significantly lower in sarcoidosis compared to controls (SLPI and hBD-1: p < 0.01). No significant correlations were found between alpha diversity and AMPs. CONCLUSIONS: The pulmonary fungal and bacterial microbiota in sarcoidosis differed from in controls. Lower antimicrobial peptides levels were seen in sarcoidosis, indicating an interaction between the microbiota and the innate immune system. Whether this dysbiosis represents a pathogenic mechanism in sarcoidosis needs to be confirmed in experimental studies. Video Abstract.


Assuntos
Microbiota , Sarcoidose , beta-Defensinas , Humanos , Peptídeos Antimicrobianos , Bactérias/genética , Líquido da Lavagem Broncoalveolar/microbiologia , Disbiose , Pulmão/microbiologia , Microbiota/genética , Inibidores de Proteases , RNA Ribossômico 16S/genética , Sarcoidose/microbiologia
3.
PLoS One ; 17(5): e0267195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35551278

RESUMO

BACKGROUND: Few studies have examined the stability of the pulmonary mycobiome. We report longitudinal changes in the oral and pulmonary mycobiome of participants with and without COPD in a large-scale bronchoscopy study (MicroCOPD). METHODS: Repeated sampling was performed in 30 participants with and 21 without COPD. We collected an oral wash (OW) and a bronchoalveolar lavage (BAL) sample from each participant at two time points. The internal transcribed spacer 1 region of the ribosomal RNA gene cluster was PCR amplified and sequenced on an Illumina HiSeq sequencer. Differences in taxonomy, alpha diversity, and beta diversity between the two time points were compared, and we examined the effect of intercurrent antibiotic use. RESULTS: Sample pairs were dominated by Candida. We observed less stability in the pulmonary taxonomy compared to the oral taxonomy, additionally emphasised by a higher Yue-Clayton measure in BAL compared to OW (0.69 vs 0.22). No apparent effect was visually seen on taxonomy from intercurrent antibiotic use or participant category. We found no systematic variation in alpha diversity by time either in BAL (p-value 0.16) or in OW (p-value 0.97), and no obvious clusters on bronchoscopy number in PCoA plots. Pairwise distance analyses showed that OW samples from repeated sampling appeared more stable compared to BAL samples using the Bray-Curtis distance metric (p-value 0.0012), but not for Jaccard. CONCLUSION: Results from the current study propose that the pulmonary mycobiome is less stable than the oral mycobiome, and neither COPD diagnosis nor intercurrent antibiotic use seemed to influence the stability.


Assuntos
Micobioma , Doença Pulmonar Obstrutiva Crônica , Antibacterianos , Líquido da Lavagem Broncoalveolar , Humanos , Estudos Longitudinais , Pulmão
4.
PLoS One ; 17(1): e0262082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990493

RESUMO

BACKGROUND: The lower airways microbiome and host immune response in chronic pulmonary diseases are incompletely understood. We aimed to investigate possible microbiome characteristics and key antimicrobial peptides and proteins in idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). METHODS: 12 IPF patients, 12 COPD patients and 12 healthy controls were sampled with oral wash (OW), protected bronchoalveolar lavage (PBAL) and right lung protected sterile brushings (rPSB). The antimicrobial peptides and proteins (AMPs), secretory leucocyte protease inhibitor (SLPI) and human beta defensins 1 and 2 (hBD-1 & hBD-2), were measured in PBAL by enzyme linked immunosorbent assay (ELISA). The V3V4 region of the bacterial 16S rDNA gene was sequenced. Bioinformatic analyses were performed with QIIME 2. RESULTS: hBD-1 levels in PBAL for IPF were lower compared with COPD. The predominant phyla in IPF were Firmicutes, Bacteroides and Actinobacteria; Proteobacteria were among top three in COPD. Differential abundance analysis at genus level showed significant differences between study groups for less abundant, mostly oropharyngeal, microbes. Alpha diversity was lower in IPF in PBAL compared to COPD (p = 0.03) and controls (p = 0.01), as well as in rPSB compared to COPD (p = 0.02) and controls (p = 0.04). Phylogenetic beta diversity showed significantly more similarity for IPF compared with COPD and controls. There were no significant correlations between alpha diversity and AMPs. CONCLUSIONS: IPF differed in microbial diversity from COPD and controls, accompanied by differences in antimicrobial peptides. Beta diversity similarity between OW and PBAL in IPF may indicate that microaspiration contributes to changes in its microbiome.


Assuntos
Peptídeos Antimicrobianos/análise , Bactérias/classificação , Fibrose Pulmonar Idiopática/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , RNA Ribossômico 16S/genética , beta-Defensinas/análise , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Estudos de Casos e Controles , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Microbiota , Pessoa de Meia-Idade , Filogenia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Análise de Sequência de DNA
5.
PLoS One ; 16(4): e0248967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826639

RESUMO

BACKGROUND: The fungal part of the pulmonary microbiome (mycobiome) is understudied. We report the composition of the oral and pulmonary mycobiome in participants with COPD compared to controls in a large-scale single-centre bronchoscopy study (MicroCOPD). METHODS: Oral wash and bronchoalveolar lavage (BAL) was collected from 93 participants with COPD and 100 controls. Fungal DNA was extracted before sequencing of the internal transcribed spacer 1 (ITS1) region of the fungal ribosomal RNA gene cluster. Taxonomic barplots were generated, and we compared taxonomic composition, Shannon index, and beta diversity between study groups, and by use of inhaled steroids. RESULTS: The oral and pulmonary mycobiomes from controls and participants with COPD were dominated by Candida, and there were more Candida in oral samples compared to BAL for both study groups. Malassezia and Sarocladium were also frequently found in pulmonary samples. No consistent differences were found between study groups in terms of differential abundance/distribution. Alpha and beta diversity did not differ between study groups in pulmonary samples, but beta diversity varied with sample type. The mycobiomes did not seem to be affected by use of inhaled steroids. CONCLUSION: Oral and pulmonary samples differed in taxonomic composition and diversity, possibly indicating the existence of a pulmonary mycobiome.


Assuntos
Fungos , Pulmão/microbiologia , Boca/microbiologia , Micobioma/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/microbiologia , Idoso , Estudos de Casos e Controles , DNA Fúngico/isolamento & purificação , Feminino , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Noruega/epidemiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...