Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38864526

RESUMO

Mastitis is an important disease with economic and welfare implications in both clinical and subclinical states. The aim of this research was to sequence the hypervariable V4 region of the 16S rRNA gene to describe the microbial diversity and taxonomy of milk from clinically healthy ewes (Rambouillet, WF = 9; Hampshire, BF = 5). Experimental ewes represented a subset of a larger study assessing the impacts of divergent dietary zinc (Zn) concentrations [1 × National Academics of Sciences, Engineering, and Medicine (NASEM) recommendations = CON or 3 × NASEM recommendations = ZnTRT] throughout late gestation and lactation. Milk was collected at four periods during early lactation (18 to 24 h, 7 d, 14 d, and 21 d postpartum) and at weaning (84 ±â€…14 d postpartum). Somatic cell counts (SCC) were quantified, averaged, and classed (low: < 500 × 103; medium: 500 × 103 - 100 × 104; high: > 100 × 104 cells/mL). Milk samples (n = 67) were sequenced to identify bacteria and archaea; the most abundant phyla were Actinobacteria, Bacteroidetes, Cyanobacteria, Euryarchaeota, Firmicutes, Fusobacteria, Lentisphaerae, Proteobacteria, Spirochaetes, Tenericutes, Saccharibacteria TM7, and Verrucomicrobia. Mastitis pathogens were among the most relatively abundant genera, including Staphylococcus, Mannheimia, Corynebacterium, and Pseudomonas. Effects of breed, dietary Zn concentration, SCC class, and their two-way interactions on milk microbiome diversity and taxonomy were assessed within early lactation (using a repeated measures model) and weaning samples. Alpha-diversity metrics included Pielou's evenness, Faith's phylogenetic diversity, and Shannon's entropy indices. The main and interactive effects between Zn treatment, breed, SCC class, and period were variable in early lactation and not evident in weaning samples. Milk from BF ewes had increased Faith's phylogenetic diversity and Shannon's entropy, and differed in unweighted UniFrac composition (P ≤ 0.10). Milk from CON ewes had a reduced rate of composition change through early lactation (P = 0.02) indicating greater microbiome stability than ZnTRT ewe milk. These results support that milk is not sterile, and breed, dietary Zn concentration, and SCC class variably affect the milk microbiome. Findings from the current study provide important foundational insights into the effects of increased dietary Zn supplementation on longitudinal changes in the milk microbiome and associations with mammary gland health and mastitis.


Mastitis is an important disease with economic and welfare implications in both clinical and subclinical states. This research described the microbial diversity and taxonomy of milk collected from clinically healthy Rambouillet (WF; n = 9) and Hampshire (BF; n = 5) primiparous ewes in a longitudinal study involving differing dietary zinc concentrations [1 × National Academics of Sciences, Engineering, and Medicine (NASEM) recommendations, CON; 3 × NASEM recommendations, ZnTRT]. Milk was collected weekly during the first 3 wk of lactation and at weaning, and somatic cell counts (SCC) were classed (low, medium, high). Mastitis pathogens were among the most relatively abundant via amplicon sequencing, including Staphylococcus, Mannheimia, Corynebacterium, and Pseudomonas. Breed, zinc treatment, and SCC class effects on milk microbiome α-diversity and ß-diversity changes and taxonomy were assessed. These effects and their two-way interactions were limited but variable in early lactation samples and not evident in weaning samples. Notably, BF ewe milk samples had increased Faith's phylogenetic diversity and increased Shannon's entropy during early lactation, and CON ewe milk samples had a reduced rate of compositional change than ZnTRT samples. These results support the existence of a milk microbiome that is variably affected by breed, increased dietary zinc concentrations, and SCC class.


Assuntos
Dieta , Suplementos Nutricionais , Lactação , Microbiota , Leite , Desmame , Zinco , Animais , Feminino , Zinco/farmacologia , Zinco/administração & dosagem , Ovinos , Leite/química , Leite/microbiologia , Microbiota/efeitos dos fármacos , Suplementos Nutricionais/análise , Dieta/veterinária , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Período Pós-Parto , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Ração Animal/análise
2.
J Anim Sci ; 100(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35554546

RESUMO

Subclinical mastitis is a common intramammary disease in sheep production systems. Expenses associated with compromised animal performance, therapeutic interventions, and decreased ewe longevity make efforts to minimize its prevalence worthwhile. The objectives of this study were to 1) quantify the prevalence of subclinical mastitis throughout lactation, 2) evaluate the impact of bedding treatments on subclinical mastitis during early lactation, 3) evaluate the efficacy of prophylaxis and feed restriction during weaning on subclinical mastitis cure rates, and 4) identify levels and types of antimicrobial resistance in milk-derived bacteria. Ewe milk samples were collected at days 1, 2, and 28 post-partum, weaning, and 3-d post-weaning for bacterial identification via culture-based methods. Staphylococcus spp. and Streptococcus spp. isolates were subjected to in vitro antimicrobial susceptibility testing. The overall prevalence of subclinical mastitis defined by culture growth ranged between 22% and 66% and differences were observed between post-weaning and days 1 and 28 milk samples. Commonly isolated bacteria include coagulase-negative staphylococci (CoNS; 59%), Bacillus spp. (35%), Mannheimia haemolytica (10%), Staphylococcus aureus (8%), Streptococcus spp. (5%), and Corynebacterium spp. (5%). Early milk samples (days 1 and 2) were compared between jug bedding treatment: jugs were recently vacated, cleaned, and dusted with barn lime before adding fresh straw (CLEAN) or jugs were previously vacated and fresh straw was added atop soiled bedding (SOILED). Jug bedding treatment did not affect the prevalence of subclinical mastitis, though CoNS had greater sulfadimethoxine resistance in SOILED isolates than CLEAN isolates (P = 0.03). Three different weaning treatments were used: ewes were injected with penicillin at weaning (PENN), ewes had restricted feed access 48 h prior to and 72 h post-weaning (FAST), or a combination of these treatments (COMBO). Weaning treatment did not affect the prevalence of subclinical mastitis or cure rate from weaning to 3-d post-weaning, though all PENN and no FAST milk S. aureus isolates were resistant against tetracycline (P = 0.08). Subclinical mastitis prevalence tended to decrease from weaning to post-weaning (P = 0.08). These data show that subclinical mastitis is common throughout lactation and the levels of antimicrobial resistance of bacteria isolated from ewe milk are generally low against commonly used antimicrobials.


Subclinical mastitis is a common intramammary disease in livestock. Expenses associated with compromised animal performance, therapeutic interventions, and decreased ewe longevity make minimizing its prevalence worthwhile. The objectives of this study were to quantify the prevalence of subclinical mastitis, evaluate the impact of bedding treatments on subclinical mastitis, evaluate the efficacy of weaning treatments, and identify levels of antimicrobial resistance in milk-derived bacteria. The overall prevalence of subclinical mastitis was 45%. Common bacteria included coagulase-negative staphylococci (CoNS), Bacillus spp., Mannheimia haemolytica, Staphylococcus aureus, Corynebacterium spp., and Streptococcus spp. Early lactation milk samples were compared between jug bedding treatments: jugs were cleaned before adding fresh straw (CLEAN) or jugs had fresh straw added atop soiled bedding (SOILED). Jug bedding treatment did not affect the prevalence of subclinical mastitis, though did affect CoNS resistance to sulfadimethoxine. Three different weaning treatments were used: ewes were administered penicillin at weaning, ewes had restricted feed access at weaning, or a combination of the two treatments. Weaning treatment did not affect the prevalence of subclinical mastitis, though subclinical mastitis prevalence decreased post-weaning. Our data show that subclinical mastitis is generally prevalent throughout lactation, and the levels of antimicrobial resistance of bacteria isolated from ewe milk are generally low.


Assuntos
Anti-Infecciosos , Doenças dos Bovinos , Mastite Bovina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Feminino , Lactação , Mastite Bovina/tratamento farmacológico , Leite , Ovinos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus , Staphylococcus aureus , Streptococcus , Desmame
3.
Animals (Basel) ; 11(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34438676

RESUMO

Feed intake restriction impacts both humans and ruminants in late gestation, although it is unknown whether this adverse maternal environment influences the microbiome of the reproductive tract, and through it, the colonization of the fetal gut. A 2 × 2 factorial design including a 70% feed intake restriction (feed restricted 'FR' or control diets 'CON') and mineral supplementation (unsupplemented 'S-' or supplemented 'S+') was used to analyze these effects in multiparous cows (n = 27). Vaginal swabs were obtained 60, 30, and 10 days prior to the estimated calving date, along with neonatal rumen fluid and meconium. Placental tissues and efficiency measurements were collected. Microbial DNA was extracted for 16S sequencing of the V4 region. Feed restriction decreased the diversity of the placental microbiome, but not the vagina, while mineral supplementation had little impact on these microbial communities. Mineral supplementation did improve the richness and diversity of the fetal gut microbiomes in relation to reproductive microbes. These differences within the placental microbiome may influence individual health and performance. Adequate maternal nutrition and supplementation yielded the greatest placental efficiency, which may aid in the establishment of a healthy placental microbiome and fetal microbial colonization.

4.
J Anim Sci ; 99(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33630062

RESUMO

Mastitis is an economically important disease and its subclinical state is difficult to diagnose, which makes mitigation more challenging. The objectives of this study were to screen clinically healthy ewes in order to 1) identify cultivable microbial species in milk, 2) evaluate somatic cell count (SCC) thresholds associated with intramammary infection, and 3) estimate relationships between udder and teat morphometric traits, SCC, and ewe productivity. Milk was collected from two flocks in early (<5 d) and peak (30 to 45 d) lactation to quantify SCC (n = 530) and numerate cultivable microbial species by culture-based isolation followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS; n = 243) identification. Within flock and lactation stage, 11% to 74% (mean = 36%) of samples were culture positive. More than 50 unique identifications were classified by MALDI-TOF MS analysis, and Bacillus licheniformis (18% to 27%), Micrococcus flavus (25%), Bacillus amyloliquefaciens (7% to 18%), and Staphylococcus epidermidis (26%) were among the most common within flock and across lactation stage. Optimum SCC thresholds to identify culture-positive samples ranged from 175 × 103 to 1,675 × 103 cells/mL. Ewe productivity was assessed as total 120-d adjusted litter weight (LW120) and analyzed within flock with breed, parity, year, and the linear covariate of log10 SCC (LSCC) at early or peak lactation. Although dependent on lactation stage and year, each 1-unit increase in LSCC (e.g., an increase in SCC from 100 × 103 to 1,000 × 103 cells/mL) was predicted to decrease LW120 between 9.5 and 16.1 kg when significant. Udder and teat traits included udder circumference, teat length, teat placement, and degree of separation of the udder halves. Correlations between traits were generally low to moderate within and across lactation stage and most were not consistently predictive of ewe LSCC. Overall, the frequencies of bacteria-positive milk samples indicated that subclinical mastitis (SCM) is common in these flocks and can impact ewe productivity. Therefore, future research is warranted to investigate pathways and timing of microbial invasion, genomic regions associated with susceptibility, and husbandry to mitigate the impact of SCM in extensively managed ewes.


Assuntos
Glândulas Mamárias Animais , Mastite , Animais , Contagem de Células/veterinária , Feminino , Lactação , Mastite/veterinária , Micrococcus , Leite , Gravidez , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...