Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5990, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645829

RESUMO

Scaling down material synthesis to crystalline structures only few atoms in size and precisely positioned in device configurations remains highly challenging, but is crucial for new applications e.g., in quantum computing. We propose to use the sidewall facets of larger III-V semiconductor nanowires (NWs), with controllable axial stacking of different crystal phases, as templates for site-selective growth of ordered few atoms 1D and 2D structures. We demonstrate this concept of self-selective growth by Bi deposition and incorporation into the surfaces of GaAs NWs to form GaBi structures. Using low temperature scanning tunneling microscopy (STM), we observe the crystal structure dependent self-selective growth process, where ordered 1D GaBi atomic chains and 2D islands are alloyed into surfaces of the wurtzite (Wz) [Formula: see text] crystal facets. The formation and lateral extension of these surface structures are controlled by the crystal structure and surface morphology uniquely found in NWs. This allows versatile high precision design of structures with predicted novel topological nature, by using the ability of NW heterostructure variations over orders of magnitude in dimensions with atomic-scale precision as well as controllably positioning in larger device structures.

2.
Nano Lett ; 20(2): 887-895, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31891513

RESUMO

We present an in-depth analysis of the surface band alignment and local potential distribution of InP nanowires containing a p-n junction using scanning probe and photoelectron microscopy techniques. The depletion region is localized to a 15 nm thin surface region by scanning tunneling spectroscopy and an electronic shift of up to 0.5 eV between the n- and p-doped nanowire segments was observed and confirmed by Kelvin probe force microscopy. Scanning photoelectron microscopy then allowed us to measure the intrinsic chemical shift of the In 3d, In 4d, and P 2p core level spectra along the nanowire and the effect of operating the nanowire diode in forward and reverse bias on these shifts. Thanks to the high-resolution techniques utilized, we observe fluctuations in the potential and chemical energy of the surface along the nanowire in great detail, exposing the sensitive nature of nanodevices to small scale structural variations.

3.
Nat Commun ; 9(1): 1412, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651110

RESUMO

Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

4.
Nanoscale ; 7(22): 9998-10004, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25981415

RESUMO

Using scanning tunneling microscopy, we evaluate the surface structure and morphology down to the atomic scale for micrometers along Au-free grown InAs nanowires (NWs) free from native oxide. We find that removal of the native oxide (which covers the NWs upon exposure to the ambient air) using atomic hydrogen does not alter the underlying step structure. Imaging with sub-nanometer resolution along the NWs, we find an extremely low tapering (diameter change along the NW) of 1.7 ± 0.5 ŵm(-1). A surface morphology with monolayer high islands, whose shape was influenced by stacking faults, was found to cover the NWs and was attributed to the decomposed native oxide. The appearance of point defects in the form of As-vacancies at the surface is analyzed and we set limits to the amount of carbon impurities in the NWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...