Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136645

RESUMO

The universally conserved protein YidC aids in the insertion and folding of transmembrane polypeptides. Supposedly, a charged arginine faces its hydrophobic lipid core, facilitating polypeptide sliding along YidC's surface. How the membrane barrier to other molecules may be maintained is unclear. Here, we show that the purified and reconstituted E. coli YidC forms an ion-conducting transmembrane pore upon ribosome or ribosome-nascent chain complex (RNC) binding. In contrast to monomeric YidC structures, an AlphaFold parallel YidC dimer model harbors a pore. Experimental evidence for a dimeric assembly comes from our BN-PAGE analysis of native vesicles, fluorescence correlation spectroscopy studies, single-molecule fluorescence photobleaching observations, and crosslinking experiments. In the dimeric model, the conserved arginine and other residues interacting with nascent chains point into the putative pore. This result suggests the possibility of a YidC-assisted insertion mode alternative to the insertase mechanism.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Ribossomos/metabolismo , Arginina/metabolismo , Membrana Celular/metabolismo
2.
Biomolecules ; 13(11)2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-38002323

RESUMO

The high propensity of protons to stay at interfaces has attracted much attention over the decades. It enables long-range interfacial proton diffusion without relying on titratable residues or electrostatic attraction. As a result, various phenomena manifest themselves, ranging from spillover in material sciences to local proton circuits between proton pumps and ATP synthases in bioenergetics. In an attempt to replace all existing theoretical and experimental insight into the origin of protons' preference for interfaces, TELP, the "Transmembrane Electrostatically-Localized Protons" hypothesis, has been proposed. The TELP hypothesis envisions static H+ and OH- layers on opposite sides of interfaces that are up to 75 µm thick. Yet, the separation at which the electrostatic interaction between two elementary charges is comparable in magnitude to the thermal energy is more than two orders of magnitude smaller and, as a result, the H+ and OH- layers cannot mutually stabilize each other, rendering proton accumulation at the interface energetically unfavorable. We show that (i) the law of electroneutrality, (ii) Fick's law of diffusion, and (iii) Coulomb's law prevail. Using them does not hinder but helps to interpret previously published experimental results, and also helps us understand the high entropy release barrier enabling long-range proton diffusion along the membrane surface.


Assuntos
Prótons , Água , Eletricidade Estática , Água/química , Difusão , Membranas
3.
Membranes (Basel) ; 13(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36676883

RESUMO

Topological rearrangements of biological membranes, such as fusion and fission, often require a sophisticated interplay between different proteins and cellular membranes. However, in the case of fusion proteins of enveloped viruses, even one molecule can execute membrane restructurings. Growing evidence indicates that matrix proteins of enveloped viruses can solely trigger the membrane bending required for another crucial step in virogenesis, the budding of progeny virions. For the case of the influenza A virus matrix protein M1, different studies report both in favor and against M1 being able to produce virus-like particles without other viral proteins. Here, we investigated the physicochemical mechanisms of M1 membrane activity on giant unilamellar vesicles of different lipid compositions using fluorescent confocal microscopy. We confirmed that M1 predominantly interacts electrostatically with the membrane, and its ability to deform the lipid bilayer is non-specific and typical for membrane-binding proteins and polypeptides. However, in the case of phase-separating membranes, M1 demonstrates a unique ability to induce macro-phase separation, probably due to the high affinity of M1's amphipathic helices to the raft boundary. Thus, we suggest that M1 is tailored to deform charged membranes with a specific activity in the case of phase-separating membranes.

4.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801254

RESUMO

Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA's transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s-1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion's transport across the membrane. ANT's dual function-ADP/ATP and H+ transport in the presence of FA-may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases.


Assuntos
Translocador 1 do Nucleotídeo Adenina/química , Translocador 1 do Nucleotídeo Adenina/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Prótons , Animais , Transporte de Íons , Potencial da Membrana Mitocondrial , Camundongos , Conformação Proteica
5.
Biomolecules ; 10(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947864

RESUMO

The bacterial channel SecYEG efficiently translocates both hydrophobic and hydrophilic proteins across the plasma membrane. Translocating polypeptide chains may dislodge the plug, a half helix that blocks the permeation of small molecules, from its position in the middle of the aqueous translocation channel. Instead of the plug, six isoleucines in the middle of the membrane supposedly seal the channel, by forming a gasket around the translocating polypeptide. However, this hypothesis does not explain how the tightness of the gasket may depend on membrane potential. Here, we demonstrate voltage-dependent closings of the purified and reconstituted channel in the presence of ligands, suggesting that voltage sensitivity may be conferred by motor protein SecA, ribosomes, signal peptides, and/or translocating peptides. Yet, the presence of a voltage sensor intrinsic to SecYEG was indicated by voltage driven closure of pores that were forced-open either by crosslinking the plug to SecE or by plug deletion. We tested the involvement of SecY's half-helix 2b (TM2b) in voltage sensing, since clearly identifiable gating charges are missing. The mutation L80D accelerated voltage driven closings by reversing TM2b's dipolar orientation. In contrast, the L80K mutation decelerated voltage induced closings by increasing TM2b's dipole moment. The observations suggest that TM2b is part of a larger voltage sensor. By partly aligning the combined dipole of this sensor with the orientation of the membrane-spanning electric field, voltage may drive channel closure.


Assuntos
Transporte Proteico/fisiologia , Canais de Translocação SEC/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Canais de Translocação SEC/fisiologia , Canais de Ânion Dependentes de Voltagem/fisiologia
6.
PLoS One ; 13(2): e0193454, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474432

RESUMO

Proton transport at water/membrane interfaces plays a fundamental role for a myriad of bioenergetic processes. Here we have performed ab initio molecular dynamics simulations of proton transfer along two phosphatidylcholine bilayers. As found in previous theoretical studies, the excess proton is preferably located at the water/membrane interface. Further, our simulations indicate that it interacts not only with phosphate head groups, but also with water molecules at the interfaces. Interfacial water molecules turn out to be oriented relative to the lipid bilayers, consistently with experimental evidence. Hence, the specific water-proton interaction may help explain the proton mobility experimentally observed at the membrane interface.


Assuntos
Membrana Celular/metabolismo , Prótons , Água/química , Água/metabolismo , Difusão , Conformação Molecular , Simulação de Dinâmica Molecular
7.
J Membr Biol ; 251(3): 329-343, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29330604

RESUMO

This review focusses on the energetics of protein translocation via the Sec translocation machinery. First we complement structural data about SecYEG's conformational rearrangements by insight obtained from functional assays. These include measurements of SecYEG permeability that allow assessment of channel gating by ligand binding and membrane voltage. Second we will discuss the power stroke and Brownian ratcheting models of substrate translocation and the role that the two models assign to the putative driving forces: (i) ATP (SecA) and GTP (ribosome) hydrolysis, (ii) interaction with accessory proteins, (iii) membrane partitioning and folding, (iv) proton motive force (PMF), and (v) entropic contributions. Our analysis underlines how important energized membranes are for unravelling the translocation mechanism in future experiments.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Trifosfato de Adenosina/metabolismo , Eletrofisiologia , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Methanocaldococcus/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Transporte Proteico/fisiologia , Força Próton-Motriz/fisiologia
8.
Sci Rep ; 7(1): 4553, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674402

RESUMO

Proton diffusion along biological membranes is vitally important for cellular energetics. Here we extended previous time-resolved fluorescence measurements to study the time and temperature dependence of surface proton transport. We determined the Gibbs activation energy barrier ΔG ‡r that opposes proton surface-to-bulk release from Arrhenius plots of (i) protons' surface diffusion constant and (ii) the rate coefficient for proton surface-to-bulk release. The large size of ΔG ‡r disproves that quasi-equilibrium exists in our experiments between protons in the near-membrane layers and in the aqueous bulk. Instead, non-equilibrium kinetics describes the proton travel between the site of its photo-release and its arrival at a distant membrane patch at different temperatures. ΔG ‡r contains only a minor enthalpic contribution that roughly corresponds to the breakage of a single hydrogen bond. Thus, our experiments reveal an entropic trap that ensures channeling of highly mobile protons along the membrane interface in the absence of potent acceptors.

9.
Sci Rep ; 7(1): 101, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273911

RESUMO

The heterotrimeric SecYEG complex cooperates with YidC to facilitate membrane protein insertion by an unknown mechanism. Here we show that YidC contacts the interior of the SecY channel resulting in a ligand-activated and voltage-dependent complex with distinct ion channel characteristics. The SecYEG pore diameter decreases from 8 Å to only 5 Å for the YidC-SecYEG pore, indicating a reduction in channel cross-section by YidC intercalation. In the presence of a substrate, YidC relocates to the rim of the pore as indicated by increased pore diameter and loss of YidC crosslinks to the channel interior. Changing the surface charge of the pore by incorporating YidC into the channel wall increases the anion selectivity, and the accompanying change in wall hydrophobicity is liable to alter the partition of helices from the pore into the membrane. This could explain how the exit of transmembrane domains from the SecY channel is facilitated by YidC.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Escherichia coli/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Sistemas de Translocação de Proteínas/química , Sistemas de Translocação de Proteínas/metabolismo
10.
Nat Nanotechnol ; 12(3): 260-266, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27842062

RESUMO

High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Microscopia de Força Atômica/métodos , Domínios Proteicos , Transporte Proteico
11.
J Biol Chem ; 289(35): 24611-6, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25016015

RESUMO

While engaged in protein transport, the bacterial translocon SecYEG must maintain the membrane barrier to small ions. The preservation of the proton motif force was attributed to (i) cation exclusion, (ii) engulfment of the nascent chain by the hydrophobic pore ring, and (iii) a half-helix partly plugging the channel. In contrast, we show here that preservation of the proton motif force is due to a voltage-driven conformational change. Preprotein or signal peptide binding to the purified and reconstituted SecYEG results in large cation and anion conductivities only when the membrane potential is small. Physiological values of membrane potential close the activated channel. This voltage-dependent closure is not dependent on the presence of the plug domain and is not affected by mutation of 3 of the 6 constriction residues to glycines. Cellular ion homeostasis is not challenged by the small remaining leak conductance.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas , Transporte Proteico , Canais de Translocação SEC
12.
J Biol Chem ; 288(25): 17941-6, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23645666

RESUMO

In co-translational translocation, the ribosome funnel and the channel of the protein translocation complex SecYEG are aligned. For the nascent chain to enter the channel immediately after synthesis, a yet unidentified signal triggers displacement of the SecYEG sealing plug from the pore. Here, we show that ribosome binding to the resting SecYEG channel triggers this conformational transition. The purified and reconstituted SecYEG channel opens to form a large ion-conducting channel, which has the conductivity of the plug deletion mutant. The number of ion-conducting channels inserted into the planar bilayer per fusion event roughly equals the number of SecYEG channels counted by fluorescence correlation spectroscopy in a single proteoliposome. Thus, the open probability of the channel must be close to unity. To prevent the otherwise lethal proton leak, a closed post-translational conformation of the SecYEG complex bound to a ribosome must exist.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Ribossomos/metabolismo , Proteínas de Escherichia coli/genética , Ativação do Canal Iônico , Canais Iônicos/genética , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Microscopia Confocal , Complexos Multiproteicos/genética , Mutação , Ligação Proteica , Transporte Proteico , Canais de Translocação SEC , Espectrometria de Fluorescência
13.
Proc Natl Acad Sci U S A ; 109(25): 9744-9, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675120

RESUMO

Fast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water/n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile G(H(+)) adopts the shape of a well at the interface, having a width of two water molecules and a depth of 6 ± 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, (5.7 ± 0.7) 10(-5) cm(2) s(-1). Conceivably, these are the protons that allow for fast diffusion along biological membranes.


Assuntos
Prótons , Água/química , Difusão , Bicamadas Lipídicas
14.
Protein Pept Lett ; 16(11): 1407-13, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19508215

RESUMO

The first attempt has been made to suggest a model of influenza A virus matrix M1 protein spatial structure and molecule orientation within a virion on the basis of tritium planigraphy data and theoretical prediction results. Limited in situ proteolysis of the intact virions with bromelain and surface plasmon resonance spectroscopy study of the M1 protein interaction with lipid coated surfaces were used for independent confirmation of the proposed model.


Assuntos
Vírus da Influenza A Subtipo H3N2/química , Proteínas da Matriz Viral/química , Vírion/química , Bromelaínas/metabolismo , Cristalografia por Raios X , Hemaglutininas Virais/química , Marcação por Isótopo , Cinética , Modelos Moleculares , Ressonância de Plasmônio de Superfície , Trítio , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...