Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(7): 112678, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379214

RESUMO

Amygdala circuitry encodes associations between conditioned stimuli and aversive unconditioned stimuli and also controls fear expression. However, whether and how non-threatening information for unpaired conditioned stimuli (CS-) is discretely processed remains unknown. The fear expression toward CS- is robust immediately after fear conditioning but then becomes negligible after memory consolidation. The synaptic plasticity of the neural pathway from the lateral to the anterior basal amygdala gates the fear expression of CS-, depending upon neuronal PAS domain protein 4 (Npas4)-mediated dopamine receptor D4 (Drd4) synthesis, which is precluded by stress exposure or corticosterone injection. Herein, we show cellular and molecular mechanisms that regulate the non-threatening (safety) memory consolidation, supporting the fear discrimination.


Assuntos
Consolidação da Memória , Memória/fisiologia , Condicionamento Clássico/fisiologia , Plasticidade Neuronal/fisiologia , Tonsila do Cerebelo/fisiologia , Dopamina
2.
Biol Psychiatry ; 88(10): 746-757, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622465

RESUMO

BACKGROUND: Cholinergic interneurons (ChINs) in the nucleus accumbens (NAc) play critical roles in processing information related to reward. However, the contribution of ChINs to the emergence of addiction-like behaviors and its underlying molecular mechanisms remain elusive. METHODS: We employed cocaine self-administration to identify two mouse subpopulations: susceptible and resilient to cocaine seeking. We compared the subpopulations for physiological responses with single-unit recording of NAc ChINs, and for gene expression levels with RNA sequencing of ChINs sorted using fluorescence-activated cell sorting. To provide evidence for a causal relationship, we manipulated the expression level of dopamine D2 receptor (DRD2) in ChINs in a cell type-specific manner. Using optogenetic activation combined with a double whole-cell recording, the effect of ChIN-specific DRD2 manipulation on each synaptic input was assessed in NAc medium spiny neurons in a pathway-specific manner. RESULTS: Susceptible mice showed higher levels of nosepoke responses under a progressive ratio schedule, and impairment in extinction and punishment procedures. DRD2 was highly abundant in the NAc ChINs of susceptible mice. Elevated abundance of DRD2 in NAc ChINs was sufficient and necessary to express high cocaine motivation, putatively through reduction of ChIN activity during cocaine exposure. DRD2 overexpression in ChINs mimicked cocaine-induced effects on the dendritic spine density and the ratios of excitatory inputs between two distinct medium spiny neuron cell types, while DRD2 depletion precluded cocaine-induced synaptic plasticity. CONCLUSIONS: These findings provide a molecular mechanism for dopaminergic control of NAc ChINs that can control the susceptibility to cocaine-seeking behavior.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Colinérgicos , Dopamina , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
3.
Neuron ; 88(2): 378-89, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26412489

RESUMO

GABAergic signaling in the amygdala controls learned fear, and its dysfunction potentially contributes to posttraumatic stress disorder (PTSD). We find that sub-threshold fear conditioning leads to dopamine receptor D4-dependent long-term depression (LTD) of glutamatergic excitatory synapses by increasing inhibitory inputs onto neurons of the dorsal intercalated cell mass (ITC) in the amygdala. Pharmacological, genetic, and optogenetic manipulations of the amygdala regions centered on the dorsal ITC reveal that this LTD limits less salient experiences from forming persistent memories. In further support of the idea that LTD has preventive and discriminative roles, we find that LTD at the dorsal ITC is impaired in mice exhibiting PTSD-like behaviors. These findings reveal a novel role of inhibitory circuits in the amygdala, which serves to dampen and restrict the level of fear expression. This mechanism is interfered with by stimuli that give rise to PTSD and may also be recruited for fear-related psychiatric diseases.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Receptores de Dopamina D4/fisiologia , Animais , Dopamina/fisiologia , Medo/psicologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...