Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 83(8): 3450-62, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19193803

RESUMO

Oncolytic adenoviral vectors that express immunostimulatory transgenes are currently being evaluated in clinic. Preclinical testing of these vectors has thus far been limited to immunodeficient xenograft tumor models since human adenoviruses do not replicate effectively in murine tumor cells. The effect of the immunostimulatory transgene on overall virus potency can therefore not be readily assessed in these models. Here, a model is described that allows the effective testing of mouse armed oncolytic adenovirus (MAV) vectors in immunocompetent syngeneic tumor models. These studies demonstrate that the MAV vectors have a high level of cytotoxicity in a wide range of murine tumor cells. The murine oncolytic viruses were successfully armed with murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) by a novel method which resulted in vectors with a high level of tumor-specific transgene expression. The mGM-CSF-armed MAV vectors showed an improved level of antitumor potency and induced a systemic antitumor immune response that was greater than that induced by unarmed parental vectors in immunocompetent syngeneic tumor models. Thus, the oncolytic MAV-1 system described here provides a murine homolog model for the testing of murine armed oncolytic adenovirus vectors in immunocompetent animals. The model allows evaluation of the impact of virus replication and the host immune response on overall virus potency and enables the generation of translational data that will be important for guiding the clinical development of these viruses.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Modelos Animais , Neoplasias/virologia , Vírus Oncolíticos/crescimento & desenvolvimento , Vírus Oncolíticos/imunologia , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Vírus Oncolíticos/genética
3.
Oncogene ; 24(52): 7763-74, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16299536

RESUMO

Changes initiated at the cellular and systemic levels as a result of viral infection or neoplastic transformation share significant overlap. Therefore, the use of replicating viruses to treat tumors has long been postulated as a promising avenue for oncolytic therapy. Over the last 10 years, transcriptionally regulated adenoviruses have become a popular platform for the development of such oncolytic viruses. Placement of heterologous promoters in front of key adenoviral transcription units to achieve tumor- or tissue-specific viral replication is well documented. Various derivatives of this general strategy have led to considerable insight into its limitations, pitfalls, and potential. Although a general process can be described by which to develop transcriptionally regulated adenoviruses, it is apparent that few set rules can yet be defined as to what constitutes a safe, stable, and therapeutically effective vector. Clinical experiences to date suggest the short-term potential for this class of therapeutics lies in combination therapy regimens. Such lessons from the clinic suggest the next generation of transcriptionally regulated oncolytic adenoviruses take advantage of the ability of the platform to carry transgenes in order to deliver a multimodal therapy from a single agent. Beyond this 'arming' of the vectors lies the detargeting, retargeting, and coating of adenoviruses to improve the delivery of the agent to the treatment site(s). As a therapeutic platform, transcriptionally regulated adenoviruses are at an early stage of development with considerable opportunities for advancement.


Assuntos
Adenoviridae/genética , Transformação Celular Neoplásica , Terapia Viral Oncolítica , Transcrição Gênica , Replicação Viral , Adenoviridae/patogenicidade , Terapia Combinada , Terapia Genética , Vetores Genéticos , Humanos , Neoplasias/terapia , Neoplasias/virologia , Vírus Oncolíticos , Regiões Promotoras Genéticas , Transgenes
4.
Cancer Gene Ther ; 12(8): 715-22, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15832172

RESUMO

Conditionally replicating adenoviruses that selectively replicate in tumor cells, but not in normal cells, are being explored as virotherapeutic agents for cancer. A prostate-specific oncolytic adenovirus, CG7870 is currently being evaluated in phase 1/2 clinical trials for the treatment of prostate cancer. To decrease the effective dose and further increase the therapeutic efficacy of CG7870, the combination of virotherapy with radiation therapy was explored in this study. CG7870 is an oncolytic adenovirus in which tumor-specific promoters are driving the expression of E1A and E1B proteins. The effects of combined treatment with CG7870 and radiation on cultured cells were determined in cytotoxicity and virus yield assays. The antitumor efficacy of CG7870 (1 x 10(7) particles/mm3 of tumor), 10 Gy of local radiation or both was evaluated in established subcutaneous LNCaP xenografts in nude mice. In vitro, the dual agent treatment resulted in synergistically enhanced potency at suboptimal doses of radiation and virus. Virus yield in irradiated cells increased relative to yield in nonirradiated cells without compromising the specificity of the vector for its target cell types. In vivo, CG7870 treatment alone suppressed tumor growth and extended tumor nonprogression time. The average tumor-volume of the groups treated with CG7870 only and radiation only was 121 and 126% of baseline, respectively, 39 days after treatment. The average tumor-volume of the combination group was 34% of baseline 39 days after a single dose of treatment. No significant body weight loss was observed in any treatment group. There was a significant drop in serum level of prostate-specific antigen (PSA) in the combination group compared to the group treated with either agent alone. In mice treated with CG7870 only or radiation only, serum PSA levels changed to 26 and 383% of baseline, respectively, by study day 46. In contrast, PSA levels in mice treated with CG7870 plus radiation decreased to less than 11% of baseline by study day 46. Histological analysis of tumor sections collected from the combination group revealed enhanced necrosis and more apoptotic cells. Combination of CG7870 with radiotherapy significantly increased antitumor efficacy compared to either agent alone. These results suggest that CG7870 in combination with radiation has improved antitumor efficacy at lower doses and with no additional side effects.


Assuntos
Adenoviridae/genética , Neoplasias da Próstata/terapia , Animais , Apoptose , Terapia Combinada , Terapia Genética , Humanos , Masculino , Camundongos , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/radioterapia , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer Ther ; 2(10): 1003-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14578465

RESUMO

Human carcinoembryonic antigen (CEA) is overexpressed in most colorectal cancers and has been widely used as a clinical marker for the management of colon cancer patients. The transcriptional regulatory elements (TREs) of CEA include two enhancer elements and a promoter in the 5'-flanking region of the CEA gene. By using these elements in different combinations to control reporter gene expression and the replication of adenovirus variants in various tumor cells, we have identified an optimal CEA regulatory cassette that tightly controls gene expression and viral replication in CEA-producing colon cancer cells. One of these variants, OV798, in which this regulatory cassette controls E1A expression, was further characterized. OV798 preferentially replicates in and kills CEA-producing colorectal cancer cell lines such as LoVo and SW1463, but its replication is attenuated by 1000-fold in the CEA-negative cell lines Colo-320DM (colon cancer), PA-1 (ovarian cancer), G361 (melanoma), U118 MG (glioma), and HBL-100 (human breast epithelial cell). The antitumor activity of OV798 was further examined in BALB/c nu/nu mice carrying s.c. human colon tumor xenografts. A single intratumoral administration of OV798 resulted in growth inhibition of human LoVo colon cancer xenografts. Six weeks after treatment, relative tumor volume decreased to 90% of baseline for the OV798 treatment group, compared to an increase to 1200% of baseline at 4 weeks for the vehicle-treated group. In vitro and in vivo characterization indicate that OV798 could be used as a therapy for human colon cancer.


Assuntos
Adenoviridae/genética , Antígeno Carcinoembrionário/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Animais , Linhagem Celular , Linhagem Celular Tumoral , DNA/química , DNA Viral/genética , Humanos , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Regiões Promotoras Genéticas , Fatores de Tempo , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...