Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3572, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328474

RESUMO

Hund's rule coupling (J) has attracted much attention recently for its role in the description of the novel quantum phases of multi-orbital materials. Depending on the orbital occupancy, J can lead to various intriguing phases. However, experimental confirmation of the orbital occupancy dependency has been difficult as controlling the orbital degrees of freedom normally accompanies chemical inhomogeneities. Here, we demonstrate a method to investigate the role of orbital occupancy in J related phenomena without inducing inhomogeneities. By growing SrRuO3 monolayers on various substrates with symmetry-preserving interlayers, we gradually tune the crystal field splitting and thus the orbital degeneracy of the Ru t2g orbitals. It effectively varies the orbital occupancies of two-dimensional (2D) ruthenates. Via in-situ angle-resolved photoemission spectroscopy, we observe a progressive metal-insulator transition (MIT). It is found that the MIT occurs with orbital differentiation: concurrent opening of a band insulating gap in the dxy band and a Mott gap in the dxz/yz bands. Our study provides an effective experimental method for investigation of orbital-selective phenomena in multi-orbital materials.


Assuntos
Projetos de Pesquisa , Sarcômeros , Espectroscopia Fotoeletrônica
2.
ACS Nano ; 17(9): 8233-8241, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094108

RESUMO

Cracking has been recognized as a major obstacle degrading material properties, including structural stability, electrical conductivity, and thermal conductivity. Recently, there have been several reports on the nanosized cracks (nanocracks), particularly in the insulating oxides. In this work, we comprehensively investigate how nanocracks affect the physical properties of metallic SrRuO3 (SRO) thin films. We grow SRO/SrTiO3 (STO) bilayers on KTaO3 (KTO) (001) substrates, which provide +1.7% tensile strain if the SRO layer is grown epitaxially. However, the SRO/STO bilayers suffer from the generation and propagation of nanocracks, and then, the strain becomes inhomogeneously relaxed. As the thickness increases, the nanocracks in the SRO layer become percolated, and its dc conductivity approaches zero. Notably, we observe an enhancement of the local optical conductivity near the nanocrack region using scanning-type near-field optical microscopy. This enhancement is attributed to the strain relaxation near the nanocracks. Our work indicates that nanocracks can be utilized as promising platforms for investigating local emergent phenomena related to strain effects.

3.
Adv Mater ; 35(15): e2208833, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739615

RESUMO

Interfaces between dissimilar correlated oxides can offer devices with versatile functionalities, and great efforts have been made to manipulate interfacial electronic phases. However, realizing such phases is often hampered by the inability to directly access the electronic structure information; most correlated interfacial phenomena appear within a few atomic layers from the interface. Here, atomic-scale epitaxy and photoemission spectroscopy are utilized to realize the interface control of correlated electronic phases in atomic-scale ruthenate-titanate heterostructures. While bulk SrRuO3 is a ferromagnetic metal, the heterointerfaces exclusively generate three distinct correlated phases in the single-atomic-layer limit. The theoretical analysis reveals that atomic-scale structural proximity effects yield Fermi liquid, Hund metal, and Mott insulator phases in the quantum-confined SrRuO3 . These results highlight the extensive interfacial tunability of electronic phases, hitherto hidden in the atomically thin correlated heterostructure. Moreover, this experimental platform suggests a way to control interfacial electronic phases of various correlated materials.

4.
Nano Lett ; 23(3): 1036-1043, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36716295

RESUMO

The oxide interfaces between materials with different structural symmetries have been actively studied due to their novel physical properties. However, the investigation of intriguing interfacial phenomena caused by the oxygen octahedral tilt (OOT) proximity effect has not been fully exploited, as there is still no clear understanding of what determines the proximity length and what the underlying control mechanism is. Here, we achieved scalability of the OOT proximity effect in SrRuO3 (SRO) by epitaxial strain near the SRO/SrTiO3 heterointerface. We demonstrated that the OOT proximity length scale of SRO is extended from 4 unit cells to 14 unit cells by employing advanced scanning transmission electron microscopy. We also suggest that this variation may originate from changes in phonon dispersions due to electron-phonon coupling in SRO. This study will provide in-depth insights into the structural gradients of correlated systems and facilitate potential device applications.

5.
Nat Commun ; 13(1): 6501, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310175

RESUMO

Antiferromagnetic (AFM) materials are attracting tremendous attention due to their spintronic applications and associated novel topological phenomena. However, detecting and identifying the spin configurations in AFM materials are quite challenging due to the absence of net magnetization. Herein, we report the practicality of utilizing the planar Hall effect (PHE) to detect and distinguish "cluster magnetic multipoles" in AFM Nd2Ir2O7 (NIO-227) fully strained films. By imposing compressive strain on the spin structure of NIO-227, we artificially induced cluster magnetic multipoles, namely dipoles and A2- and T1-octupoles. Importantly, under magnetic field rotation, each magnetic multipole exhibits distinctive harmonics of the PHE oscillation. Moreover, the planar Hall conductivity has a nonlinear magnetic field dependence, which can be attributed to the magnetic response of the cluster magnetic octupoles. Our work provides a strategy for identifying cluster magnetic multipoles in AFM systems and would promote octupole-based AFM spintronics.

6.
Nano Lett ; 21(10): 4185-4192, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33979525

RESUMO

Ruddlesden-Popper (RP) phases (An+1BnO3n+1, n = 1, 2,···) have attracted intensive research with diverse functionalities for device applications. However, the realization of a high-quality RP-phase film is hindered by the formation of out-of-phase boundaries (OPBs) that occur at terrace edges, originating from lattice mismatch in the c-axis direction with the A'B'O3 (n = ∞) substrate. Here, using strontium ruthenate RP-phase Sr2RuO4 (n = 1) as a model system, an experimental approach for suppressing OPBs was developed. By tuning the growth parameters, the Sr3Ru2O7 (n = 2) phase was formed in a controlled manner near the film-substrate interface. This higher-order RP-phase then blocked the subsequent formation of OPBs, resulting in nearly defect-free Sr2RuO4 layer at the upper region of the film. Consequently, the Sr2RuO4 thin films exhibited superconductivity up to 1.15 K, which is the highest among Sr2RuO4 films grown by pulsed laser deposition. This work paves the way for synthesizing pristine RP-phase heterostructures and exploring their unique physical properties.

7.
Sci Adv ; 6(29): eabb1539, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832638

RESUMO

The recent observation of the anomalous Hall effect (AHE) without notable magnetization in antiferromagnets has suggested that ferromagnetic ordering is not a necessary condition. Thus, recent theoretical studies have proposed that higher-rank magnetic multipoles formed by clusters of spins (cluster multipoles) can generate the AHE without magnetization. Despite such an intriguing proposal, controlling the unconventional AHE by inducing these cluster multipoles has not been investigated. Here, we demonstrate that strain can manipulate the hidden Berry curvature effect by inducing the higher-rank cluster multipoles in spin-orbit-coupled antiferromagnets. Observing the large AHE on fully strained antiferromagnetic Nd2Ir2O7 thin films, we prove that strain-induced cluster T 1-octupoles are the only source of observed AHE. Our results provide a previously unidentified pathway for generating the unconventional AHE via strain-induced magnetic structures and establish a platform for exploring undiscovered topological phenomena via strain in correlated materials.

8.
Nat Commun ; 11(1): 2586, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444818

RESUMO

Dielectrics have long been considered as unsuitable for pure electrical switches; under weak electric fields, they show extremely low conductivity, whereas under strong fields, they suffer from irreversible damage. Here, we show that flexoelectricity enables damage-free exposure of dielectrics to strong electric fields, leading to reversible switching between electrical states-insulating and conducting. Applying strain gradients with an atomic force microscope tip polarizes an ultrathin film of an archetypal dielectric SrTiO3 via flexoelectricity, which in turn generates non-destructive, strong electrostatic fields. When the applied strain gradient exceeds a certain value, SrTiO3 suddenly becomes highly conductive, yielding at least around a 108-fold decrease in room-temperature resistivity. We explain this phenomenon, which we call the colossal flexoresistance, based on the abrupt increase in the tunneling conductance of ultrathin SrTiO3 under strain gradients. Our work extends the scope of electrical control in solids, and inspires further exploration of dielectric responses to strong electromechanical fields.

9.
Nano Lett ; 20(4): 2468-2477, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32202801

RESUMO

In quantum matters hosting electron-electron correlation and spin-orbit coupling, spatial inhomogeneities, arising from competing ground states, can be essential for understanding exotic topological properties. A prominent example is Hall anomalies observed in SrRuO3 films, which were interpreted in terms of either magnetic skyrmion-induced topological Hall effect or inhomogeneous anomalous Hall effect (AHE). To clarify this ambiguity, we systematically investigated the evolution of AHE with controllable inhomogeneities in SrRuO3 film thickness (tSRO). By exploiting the step-flow growth of SrRuO3 films, we induced a microscopically ordered stripe pattern with one-unit-cell differences in tSRO. The associated spatial distribution of momentum-space Berry curvatures enables a two-channel AHE with hump-like Hall anomalies, which can be continuously engineered according to non-integer tSRO. We further microscopically characterized the stripe-like ferromagnetic domains and two-step magnetic switching behavior in the inhomogeneous SrRuO3 film. These unique features can be utilized to identify the two-channel AHE model and understand its microscopic origin.

10.
Adv Mater ; 32(8): e1905815, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31830343

RESUMO

The metal-insulator transition (MIT) in transition-metal-oxide is fertile ground for exploring intriguing physics and potential device applications. Here, an atomic-scale MIT triggered by surface termination conversion in SrRuO3 ultrathin films is reported. Uniform and effective termination engineering at the SrRuO3 (001) surface can be realized via a self-limiting water-leaching process. As the surface termination converts from SrO to RuO2 , a highly insulating and nonferromagnetic phase emerges within the topmost SrRuO3 monolayer. Such a spatially confined MIT is corroborated by systematic characterizations on electrical transport, magnetism, and scanning tunneling spectroscopy. Density functional theory calculations and X-ray linear dichroism further suggest that the surface termination conversion breaks the local octahedral symmetry of the crystal field. The resultant modulation in 4d orbital occupancy stabilizes a nonferromagnetic insulating surface state. This work introduces a new paradigm to stimulate and tune exotic functionalities of oxide heterostructures with atomic precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...