Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37631298

RESUMO

P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), is critical in preventing brain access to substrate drugs and effluxing amyloid beta (Aß), a contributor to Alzheimer's disease (AD). Strategies to regulate P-gp expression therefore may impact central nervous system (CNS) drug delivery and brain Aß levels. As we have demonstrated that the copper complex copper diacetyl bis(4-methyl-3-thiosemicarbazone) (Cu(ATSM)) increases P-gp expression and function in human brain endothelial cells, the present study assessed the impact of Cu(ATSM) on expression and function of P-gp in mouse brain endothelial cells (mBECs) and capillaries in vivo, as well as in peripheral organs. Isolated mBECs treated with Cu(ATSM) (100 nM for 24 h) exhibited a 1.6-fold increase in P-gp expression and a 20% reduction in accumulation of the P-gp substrate rhodamine 123. Oral administration of Cu(ATSM) (30 mg/kg/day) for 28 days led to a 1.5 & 1.3-fold increase in brain microvascular and hepatic expression of P-gp, respectively, and a 20% reduction in BBB transport of [3H]-digoxin. A metallomic analysis showed a 3.5 and 19.9-fold increase in Cu levels in brain microvessels and livers of Cu(ATSM)-treated mice. Our findings demonstrate that Cu(ATSM) increases P-gp expression and function at the BBB in vivo, with implications for CNS drug delivery and clearance of Aß in AD.

2.
Neuroscience ; 509: 125-131, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436699

RESUMO

CuII(atsm) is a blood-brain barrier permeant copper(II) compound that is under investigation in human clinical trials for the treatment of neurodegenerative diseases of the central nervous system (CNS). Imaging in humans by positron emission tomography shows the compound accumulates in affected regions of the CNS in patients. Most therapeutic studies to date have utilised oral administration of CuII(atsm) in an insoluble form, as either solid tablets or a liquid suspension. However, two pre-clinical studies have demonstrated disease-modifying outcomes following transdermal application of soluble CuII(atsm) prepared in dimethyl sulphoxide. Whether differences in the method of administration lead to different degrees of tissue accumulation of the compound has never been examined. Here, we compare the two methods of administration in wild-type mice by assessing changes in tissue concentrations of copper. Both administration methods resulted in elevated copper concentrations in numerous tissues, with the largest increases evident in the liver, brain and spinal cord. In all instances where treatment with CuII(atsm) resulted in elevated tissue copper, transdermal application of soluble CuII(atsm) led to higher concentrations of copper. In contrast to CuII(atsm), an equivalent dose of copper(II) chloride resulted in minimal changes to tissue copper concentrations, regardless of the administration method. Data presented herein provide quantitative insight to transdermal application of soluble CuII(atsm) as a potential alternative to oral administration of the compound in an insoluble formulation.


Assuntos
Compostos Organometálicos , Tiossemicarbazonas , Camundongos , Humanos , Animais , Compostos Organometálicos/uso terapêutico , Cobre , Tiossemicarbazonas/uso terapêutico , Medula Espinal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...