Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Struct Funct ; 45(1): 9-21, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31852864

RESUMO

ATF6α is an endoplasmic reticulum (ER)-embedded transcription factor which is rapidly activated by ER stress, and a major regulator of ER chaperone levels in vertebrates. We previously suggested that ATF6α occurs as a monomer, dimer and oligomer in the unstressed ER of Chinese hamster ovary cells due to the presence of two evolutionarily conserved cysteine residues in its luminal region (C467 and C618), and showed that ATF6α is reduced upon ER stress, such that only reduced monomer ATF6α is translocated to the Golgi apparatus for activation by proteolysis. However, mutagenesis analysis (C467A and C618A) revealed that the C618A mutant behaves in an unexpected manner (monomer and oligomer) during non-reducing SDS-PAGE, for reasons which remained unclear. Here, we used human colorectal carcinoma-derived HCT116 cells deficient in ATF6α and its relevant ATF6ß, and found that ATF6α dimer and oligomer are both dimers, which we designated C618-dimer and C467-dimer, respectively. We demonstrated that C467-dimer (previously considered an oligomer) behaved bigger than C618-dimer (previously considered a dimer) during non-reducing SDS-PAGE, based on their disulfide-bonded structures. Furthermore, ATF6α monomer physically associates with another ATF6α monomer in the absence of disulfide bonding, which renders two C467 residues in close proximity so that formation of C467-dimer is much easier than that of C618-dimer. In contrast, C618-dimer is more easily reduced upon ER stress. Thus, our analysis revealed that all forms of ATF6α, namely monomer, C618-dimer and C467-dimer, are activated by single reduction of a disulfide bond in response to ER stress, ensuring the rapidity of ATF6α activation.Key words: disulfide-bonded structure, endoplasmic reticulum, membrane-bound transcription factor, non-reducing SDS-PAGE, unfolded protein response.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Fator 6 Ativador da Transcrição/genética , Animais , Cricetinae , Cricetulus/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/fisiologia , Complexo de Golgi/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
2.
Curr Biol ; 25(19): 2549-54, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26387717

RESUMO

Animal bodies are shaped by skeletons, which are built inside the body by biomineralization of condensed mesenchymal cells in vertebrates [1, 2] and echinoderms [3, 4], or outside the body by apical secretion of extracellular matrices by epidermal cell layers in arthropods [5]. In each case, the skeletons' shapes are a direct reflection of the pattern of skeleton-producing cells [6]. Here we report a newly discovered mode of skeleton formation: assembly of sponges' mineralized skeletal elements (spicules) in locations distant from where they were produced. Although it was known that internal skeletons of sponges consist of spicules assembled into large pole-and-beam structures with a variety of morphologies [7-10], the spicule assembly process (i.e., how spicules become held up and connected basically in staggered tandem) and what types of cells act in this process remained unexplored. Here we found that mature spicules are dynamically transported from where they were produced and then pierce through outer epithelia, and their basal ends become fixed to substrate or connected with such fixed spicules. Newly discovered "transport cells" mediate spicule movement and the "pierce" step, and collagen-secreting basal-epithelial cells fix spicules to the substratum, suggesting that the processes of spiculous skeleton construction are mediated separately by specialized cells. Division of labor by manufacturer, transporter, and cementer cells, and iteration of the sequential mechanical reactions of "transport," "pierce," "raise up," and "cementation," allows construction of the spiculous skeleton spicule by spicule as a self-organized biological structure, with the great plasticity in size and shape required for indeterminate growth, and generating the great morphological diversity of individual sponges.


Assuntos
Poríferos/crescimento & desenvolvimento , Poríferos/metabolismo , Animais , Cimentação , Colágeno/metabolismo , Epitélio/metabolismo , Minerais/metabolismo , Esqueleto
3.
J Biol Chem ; 288(44): 31517-27, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043630

RESUMO

Proteins misfolded in the endoplasmic reticulum (ER) are cleared by the ubiquitin-dependent proteasome system in the cytosol, a series of events collectively termed ER-associated degradation (ERAD). It was previously shown that SEL1L, a partner protein of the E3 ubiquitin ligase HRD1, is required for degradation of misfolded luminal proteins (ERAD-Ls substrates) but not misfolded transmembrane proteins (ERAD-Lm substrates) in both mammalian and chicken DT40 cells. Here, we analyzed ATF6, a type II transmembrane glycoprotein that serves as a sensor/transducer of the unfolded protein response, as a potential ERAD-Lm substrate in DT40 cells. Unexpectedly, degradation of endogenous ATF6 and exogenously expressed chicken and human ATF6 by the proteasome required SEL1L. Deletion analysis revealed that the luminal region of ATF6 is a determinant for SEL1L-dependent degradation. Chimeric analysis showed that the luminal region of ATF6 confers SEL1L dependence on type I transmembrane protein as well. In contrast, degradation of other known type I ERAD-Lm substrates (BACE457, T-cell receptor-α, CD3-δ, and CD147) did not require SEL1L. Thus, ATF6 represents a novel type of ERAD-Lm substrate requiring SEL1L for degradation despite its transmembrane nature. In addition, endogenous ATF6 was markedly stabilized in wild-type cells treated with kifunensine, an inhibitor of α1,2-mannosidase in the ER, indicating that degradation of ATF6 requires proper mannose trimming. Our further analyses revealed that the five ERAD-Lm substrates examined are classified into three subgroups based on their dependence on mannose trimming and SEL1L. Thus, ERAD-Lm substrates are degraded through much more diversified mechanisms in higher eukaryotes than previously thought.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Manose/metabolismo , Manosidases/metabolismo , Proteínas/metabolismo , Fator 6 Ativador da Transcrição/genética , Alcaloides/farmacologia , Animais , Antidepressivos/farmacologia , Linhagem Celular , Galinhas , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Manose/genética , Manosidases/antagonistas & inibidores , Manosidases/genética , Fenelzina/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteínas/genética , Proteólise/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...