Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 8(11): 1491-1497, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35651187

RESUMO

Fabrication of charged, multiphasic, polymeric micro- and nanoparticles with precise control over their composition, size, and shape is critical for developing the next generation of drug carriers for combinatorial therapies and theranostics. The addition of charged polyelectrolyte multilayers on the surface of polymeric particles can significantly improve their stability, targeting efficacy, drug-release kinetics, and their ability to encapsulate different drugs within a single particle. Many of the traditional methods for multilayer functionalization of multiphasic polymeric particles are time and energy intensive which significantly limits their scalability, and therefore therapeutic potential. In this work, we combine the bulk layer-by-layer polyelectrolyte application methodology with our previously developed technique of fabricating multiphasic polymeric particles on substrates with patterned wettability to synthesize biocompatible, monodisperse, Janus polymer-polyelectrolyte particles.

2.
Sci Adv ; 2(3): e1501496, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998520

RESUMO

Ice accretion has a negative impact on critical infrastructure, as well as a range of commercial and residential activities. Icephobic surfaces are defined by an ice adhesion strength τice < 100 kPa. However, the passive removal of ice requires much lower values of τice, such as on airplane wings or power lines (τice < 20 kPa). Such low τice values are scarcely reported, and robust coatings that maintain these low values have not been reported previously. We show that, irrespective of material chemistry, by tailoring the cross-link density of different elastomeric coatings and by enabling interfacial slippage, it is possible to systematically design coatings with extremely low ice adhesion (τice < 0.2 kPa). These newfound mechanisms allow for the rational design of icephobic coatings with virtually any desired ice adhesion strength. By using these mechanisms, we fabricate extremely durable coatings that maintain τice < 10 kPa after severe mechanical abrasion, acid/base exposure, 100 icing/deicing cycles, thermal cycling, accelerated corrosion, and exposure to Michigan wintery conditions over several months.


Assuntos
Desenho de Equipamento , Gelo , Microscopia de Força Atômica , Propriedades de Superfície
3.
ACS Appl Mater Interfaces ; 7(7): 4075-80, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25625176

RESUMO

Precise control over the geometry and chemistry of multiphasic particles is of significant importance for a wide range of applications. In this work, we have developed one of the simplest methodologies for fabricating monodisperse, multiphasic micro- and nanoparticles possessing almost any composition, projected shape, modulus, and dimensions as small as 25 nm. The synthesis methodology involves the fabrication of a nonwettable surface patterned with monodisperse, wettable domains of different sizes and shapes. When such patterned templates are dip-coated with polymer solutions or particle dispersions, the liquids, and consequently the polymer or the particles, preferentially self-assemble within the wettable domains. Utilizing this phenomenon, we fabricate multiphasic assemblies with precisely controlled geometry and composition through multiple, layered depositions of polymers and/or particles within the patterned domains. Upon releasing these multiphasic assemblies from the template using a sacrificial layer, we obtain multiphasic particles. The templates can then be readily reused (over 20 times in our experiments) for fabricating a new batch of particles, enabling a rapid, inexpensive, and easily reproducible method for large-scale manufacturing of multiphasic particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...