Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 45(4): 522-527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370278

RESUMO

The accumulation of uremic toxins is known to be one of the causes of cardiovascular disorder related to renal disease. Among the many uremic toxins, we focused on kynurenine (kyn), whose levels have been shown to be positively correlated with vascular endothelial dysfunction markers, and directly evaluated the influence of kyn on the rat thoracic aorta. Exposure of the endothelium-intact aorta to kyn markedly attenuated the acetylcholine (ACh)-induced relaxation and significantly increased superoxide anion (O2·-) production. These effects were ameliorated by pretreatment with ascorbic acid, an antioxidant, and CH223191, an aryl hydrocarbon receptor (AhR) inhibitor, but not by apocynin, a reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor. In the endothelium-denuded aorta, kyn significantly attenuated the nitric oxide (NO) donor sodium nitroprusside (SNP)-induced vasorelaxation and increased the O2·- production. Ascorbic acid treatment significantly ameliorated these effects, whereas CH223191 and apocynin treatments did not. Kyn had no influence on the vasorelaxant response to BAY 41-2272, a soluble guanylate cyclase stimulator. This suggested that kyn attenuates the NO-mediated vasorelaxation response by promoting O2·- production in thoracic aorta to inactivate NO. O2·- production is likely stimulated in both vascular endothelium and smooth muscle, the former of which may be mediated by AhR activation.


Assuntos
Cinurenina , Superóxidos , Animais , Aorta Torácica , Endotélio Vascular , Cinurenina/farmacologia , Ratos , Vasodilatação
2.
J Agric Food Chem ; 69(33): 9551-9556, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34374535

RESUMO

A novel insecticide flupyrimin (FLP) with a trifluoroacetyl pharmacophore acts as an antagonist at the insect nicotinic acetylcholine receptor (nAChR). This investigation examines a hypothesis that the FLP C(O)CF3 moiety is primarily recognized by the ß subunit-face in the ligand-binding pocket (interface between α and ß subunits) of the insect nAChR. Accordingly, we evaluate the atomic interaction between a fluorine atom of FLP and the partnering amino acid side chain on the ß subunit employing a recombinant hybrid nAChR consisting of aphid Mpα2 and rat Rß2 subunits (with a mutation at T77 on the Rß2). The H-donating T77R, T77K, T77N, or T77Q nAChR enhances the FLP binding potency relative to that of the wild-type receptor, whereas the affinity of neonicotinoid imidaclprid (IMI) with a nitroguanidine pharmacophore remains unchanged. These results facilitate the establishment of the unique FLP molecular recognition at the Mpα2/Mpß1 interface structural model, thereby underscoring a distinction in its binding mechanism from IMI.


Assuntos
Afídeos , Inseticidas , Receptores Nicotínicos , Animais , Insetos , Neonicotinoides , Nitrocompostos , Ratos , Receptores Nicotínicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...