Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Phys Rev E ; 109(4-1): 044308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755923

RESUMO

We investigate the convergence of chemical reaction networks (CRNs), aiming to establish an upper bound on their reaction rates. The nonlinear characteristics and discrete composition of CRNs pose significant challenges in this endeavor. To circumvent these complexities, we adopt an information geometric perspective, utilizing the natural gradient to formulate a nonlinear system. This system effectively determines an upper bound for the dynamics of CRNs. We corroborate our methodology through numerical simulations, which reveal that our constructed system converges more rapidly than CRNs within a particular class of reactions. This class is defined by the count of chemicals, the highest stoichiometric coefficients in the reactions, and the total number of reactions involved. Further, we juxtapose our approach with traditional methods, illustrating that the latter falls short in providing an upper bound for CRN reaction rates. Although our investigation centers on CRNs, the widespread presence of hypergraphs across various disciplines, ranging from natural sciences to engineering, indicates potential wider applications of our method, including in the realm of information science.

2.
Nat Commun ; 15(1): 953, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296961

RESUMO

Autophagy is primarily activated by cellular stress, such as starvation or mitochondrial damage. However, stress-independent autophagy is activated by unclear mechanisms in several cell types, such as thymic epithelial cells (TECs). Here we report that the mitochondrial protein, C15ORF48, is a critical inducer of stress-independent autophagy. Mechanistically, C15ORF48 reduces the mitochondrial membrane potential and lowers intracellular ATP levels, thereby activating AMP-activated protein kinase and its downstream Unc-51-like kinase 1. Interestingly, C15ORF48-dependent induction of autophagy upregulates intracellular glutathione levels, promoting cell survival by reducing oxidative stress. Mice deficient in C15orf48 show a reduction in stress-independent autophagy in TECs, but not in typical starvation-induced autophagy in skeletal muscles. Moreover, C15orf48-/- mice develop autoimmunity, which is consistent with the fact that the stress-independent autophagy in TECs is crucial for the thymic self-tolerance. These results suggest that C15ORF48 induces stress-independent autophagy, thereby regulating oxidative stress and self-tolerance.


Assuntos
Autoimunidade , Proteínas Mitocondriais , Camundongos , Animais , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Autofagia , Células Epiteliais/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo
3.
Genes Cells ; 28(12): 929-941, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37909727

RESUMO

One hallmark of some autoimmune diseases is the variability of symptoms among individuals. Organs affected by the disease differ between patients, posing a challenge in diagnosing the affected organs. Although numerous studies have investigated the correlation between T cell antigen receptor (TCR) repertoires and the development of infectious and immune diseases, the correlation between TCR repertoires and variations in disease symptoms among individuals remains unclear. This study aimed to investigate the correlation of TCRα and ß repertoires in blood T cells with the extent of autoimmune signs that varies among individuals. We sequenced TCRα and ß of CD4+ CD44high CD62Llow T cells in the blood and stomachs of mice deficient in autoimmune regulator (Aire) (AIRE KO), a mouse model of human autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Data analysis revealed that the degree of similarity in TCR sequences between the blood and stomach varied among individual AIRE KO mice and reflected the extent of T cell infiltration in the stomach. We identified a set of TCR sequences whose frequencies in blood might correlate with extent of the stomach manifestations. Our results propose a potential of using TCR repertoires not only for diagnosing disease development but also for diagnosing affected organs in autoimmune diseases.


Assuntos
Doenças Autoimunes , Poliendocrinopatias Autoimunes , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos , Receptores de Antígenos de Linfócitos T/genética
4.
Front Immunol ; 14: 1186154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022666

RESUMO

The thymus has the ability to regenerate from acute injury caused by radiation, infection, and stressors. In addition to thymocytes, thymic epithelial cells in the medulla (mTECs), which are crucial for T cell self-tolerance by ectopically expressing and presenting thousands of tissue-specific antigens (TSAs), are damaged by these insults and recover thereafter. However, given recent discoveries on the high heterogeneity of mTECs, it remains to be determined whether the frequency and properties of mTEC subsets are restored during thymic recovery from radiation damage. Here we demonstrate that acute total body irradiation with a sublethal dose induces aftereffects on heterogeneity and gene expression of mTECs. Single-cell RNA-sequencing (scRNA-seq) analysis showed that irradiation reduces the frequency of mTECs expressing AIRE, which is a critical regulator of TSA expression, 15 days after irradiation. In contrast, transit-amplifying mTECs (TA-mTECs), which are progenitors of AIRE-expressing mTECs, and Ccl21a-expressing mTECs, were less affected. Interestingly, a detailed analysis of scRNA-seq data suggested that the proportion of a unique mTEC cluster expressing Ccl25 and a high level of TSAs was severely decreased by irradiation. In sum, we propose that the effects of acute irradiation disrupt the heterogeneity and properties of mTECs over an extended period, which potentially leads to an impairment of thymic T cell selection.


Assuntos
Fatores de Transcrição , Transcriptoma , Camundongos , Animais , Fatores de Transcrição/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo
5.
Entropy (Basel) ; 25(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238546

RESUMO

Decentralized stochastic control (DSC) is a stochastic optimal control problem consisting of multiple controllers. DSC assumes that each controller is unable to accurately observe the target system and the other controllers. This setup results in two difficulties in DSC; one is that each controller has to memorize the infinite-dimensional observation history, which is not practical, because the memory of the actual controllers is limited. The other is that the reduction of infinite-dimensional sequential Bayesian estimation to finite-dimensional Kalman filter is impossible in general DSC, even for linear-quadratic-Gaussian (LQG) problems. In order to address these issues, we propose an alternative theoretical framework to DSC-memory-limited DSC (ML-DSC). ML-DSC explicitly formulates the finite-dimensional memories of the controllers. Each controller is jointly optimized to compress the infinite-dimensional observation history into the prescribed finite-dimensional memory and to determine the control based on it. Therefore, ML-DSC can be a practical formulation for actual memory-limited controllers. We demonstrate how ML-DSC works in the LQG problem. The conventional DSC cannot be solved except in the special LQG problems where the information the controllers have is independent or partially nested. We show that ML-DSC can be solved in more general LQG problems where the interaction among the controllers is not restricted.

6.
Entropy (Basel) ; 25(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36832575

RESUMO

Memory-limited partially observable stochastic control (ML-POSC) is the stochastic optimal control problem under incomplete information and memory limitation. To obtain the optimal control function of ML-POSC, a system of the forward Fokker-Planck (FP) equation and the backward Hamilton-Jacobi-Bellman (HJB) equation needs to be solved. In this work, we first show that the system of HJB-FP equations can be interpreted via Pontryagin's minimum principle on the probability density function space. Based on this interpretation, we then propose the forward-backward sweep method (FBSM) for ML-POSC. FBSM is one of the most basic algorithms for Pontryagin's minimum principle, which alternately computes the forward FP equation and the backward HJB equation in ML-POSC. Although the convergence of FBSM is generally not guaranteed in deterministic control and mean-field stochastic control, it is guaranteed in ML-POSC because the coupling of the HJB-FP equations is limited to the optimal control function in ML-POSC.

7.
Artif Intell Med ; 134: 102432, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36462898

RESUMO

In assisted reproductive technology (ART), embryos produced by in vitro fertilization (IVF) are graded according to their live birth potential, and high-grade embryos are preferentially transplanted. However, rates of live birth following clinical ART remain low worldwide. Grading is based on the embryo shape at a limited number of stages and does not consider the shape of embryos and intracellular structures, e.g., nuclei, at various stages important for normal embryogenesis. Here, we developed a Normalized Multi-View Attention Network (NVAN) that directly predicts live birth potential from the nuclear structure in live-cell fluorescence images of mouse embryos from zygote to across a wide range of stages. The input is morphological features of cell nuclei, which were extracted as multivariate time-series data by using the segmentation algorithm for mouse embryos. The classification accuracy of our method (83.87%) greatly exceeded that of existing machine-learning methods and that of visual inspection by embryo culture specialists. Our method also has a new attention mechanism that allows us to determine which values of multivariate time-series data, used to describe nuclear morphology, were the basis for the prediction. By visualizing the features that contributed most to the prediction of live birth potential, we found that the size and shape of the nucleus at the morula stage and at the time of cell division were important for live birth prediction. We anticipate that our method will help ART and developmental engineering as a new basic technology for IVF embryo selection.


Assuntos
Aprendizado Profundo , Nascido Vivo , Camundongos , Animais , Gravidez , Feminino , Algoritmos , Aprendizado de Máquina , Fatores de Tempo
8.
Entropy (Basel) ; 24(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359688

RESUMO

Control problems with incomplete information and memory limitation appear in many practical situations. Although partially observable stochastic control (POSC) is a conventional theoretical framework that considers the optimal control problem with incomplete information, it cannot consider memory limitation. Furthermore, POSC cannot be solved in practice except in special cases. In order to address these issues, we propose an alternative theoretical framework, memory-limited POSC (ML-POSC). ML-POSC directly considers memory limitation as well as incomplete information, and it can be solved in practice by employing the technique of mean-field control theory. ML-POSC can generalize the linear-quadratic-Gaussian (LQG) problem to include memory limitation. Because estimation and control are not clearly separated in the LQG problem with memory limitation, the Riccati equation is modified to the partially observable Riccati equation, which improves estimation as well as control. Furthermore, we demonstrate the effectiveness of ML-POSC for a non-LQG problem by comparing it with the local LQG approximation.

9.
Front Immunol ; 13: 797640, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936014

RESUMO

The repertoire of T cell receptors encodes various types of immunological information. Machine learning is indispensable for decoding such information from repertoire datasets measured by next-generation sequencing (NGS). In particular, the classification of repertoires is the most basic task, which is relevant for a variety of scientific and clinical problems. Supported by the recent appearance of large datasets, efficient but data-expensive methods have been proposed. However, it is unclear whether they can work efficiently when the available sample size is severely restricted as in practical situations. In this study, we demonstrate that their performances can be impaired substantially below critical sample sizes. To complement this drawback, we propose MotifBoost, which exploits the information of short k-mer motifs of TCRs. MotifBoost can perform the classification as efficiently as a deep learning method on large datasets while providing more stable and reliable results on small datasets. We tested MotifBoost on the four small datasets which consist of various conditions such as Cytomegalovirus (CMV), HIV, α-chain, ß-chain and it consistently preserved the stability. We also clarify that the robustness of MotifBoost can be attributed to the efficiency of k-mer motifs as representation features of repertoires. Finally, by comparing the predictions of these methods, we show that the whole sequence identity and sequence motifs encode partially different information and that a combination of such complementary information is necessary for further development of repertoire analysis.


Assuntos
Citomegalovirus , Receptores de Antígenos de Linfócitos T , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Aprendizado de Máquina
10.
Front Immunol ; 13: 858057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911778

RESUMO

Sparked by the development of genome sequencing technology, the quantity and quality of data handled in immunological research have been changing dramatically. Various data and database platforms are now driving the rapid progress of machine learning for immunological data analysis. Of various topics in immunology, T cell receptor repertoire analysis is one of the most important targets of machine learning for assessing the state and abnormalities of immune systems. In this paper, we review recent repertoire analysis methods based on machine learning and deep learning and discuss their prospects.


Assuntos
Sistema Imunitário , Aprendizado de Máquina , Receptores de Antígenos de Linfócitos T/genética
11.
Sci Rep ; 12(1): 9411, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672442

RESUMO

To improve the performance of assisted reproductive technology, it is necessary to find an indicator that can identify and select embryos that will be born or be aborted. We searched for indicators of embryo selection by comparing born/abort mouse embryos. We found that asynchronous embryos during the 4-8-cell stage were predisposed to be aborted. In asynchronous mouse embryos, the nuclear translocation of YAP1 in some blastomeres and compaction were delayed, and the number of ICMs was reduced. Hence, it is possible that asynchronous embryos have abnormal differentiation. When the synchrony of human embryos was observed, it was confirmed that embryos that did not reach clinical pregnancy had asynchrony as in mice. This could make synchrony a universal indicator common to all animal species.


Assuntos
Diagnóstico Pré-Implantação , Animais , Blastocisto , Blastômeros , Embrião de Mamíferos , Feminino , Nascido Vivo , Camundongos , Gravidez
12.
Entropy (Basel) ; 23(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947054

RESUMO

Decentralized partially observable Markov decision process (DEC-POMDP) models sequential decision making problems by a team of agents. Since the planning of DEC-POMDP can be interpreted as the maximum likelihood estimation for the latent variable model, DEC-POMDP can be solved by the EM algorithm. However, in EM for DEC-POMDP, the forward-backward algorithm needs to be calculated up to the infinite horizon, which impairs the computational efficiency. In this paper, we propose the Bellman EM algorithm (BEM) and the modified Bellman EM algorithm (MBEM) by introducing the forward and backward Bellman equations into EM. BEM can be more efficient than EM because BEM calculates the forward and backward Bellman equations instead of the forward-backward algorithm up to the infinite horizon. However, BEM cannot always be more efficient than EM when the size of problems is large because BEM calculates an inverse matrix. We circumvent this shortcoming in MBEM by calculating the forward and backward Bellman equations without the inverse matrix. Our numerical experiments demonstrate that the convergence of MBEM is faster than that of EM.

13.
Phys Rev Lett ; 126(12): 128102, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33834835

RESUMO

The chemotactic network of Escherichia coli has been studied extensively both biophysically and information theoretically. Nevertheless, connection between these two aspects is still elusive. In this work, we report such a connection. We derive an optimal filtering dynamics under the assumption that E. coli's sensory system optimally infers the binary information whether it is swimming up or down along an exponential ligand gradient from noisy sensory signals. Then we show that a standard biochemical model of the chemotactic network is mathematically equivalent to this information-theoretically optimal dynamics. Moreover, we demonstrate that an experimentally observed nonlinear response relation can be reproduced from the optimal dynamics. These results suggest that the biochemical network of E. coli chemotaxis is designed to optimally extract the binary information along an exponential gradient in a noisy condition.


Assuntos
Quimiotaxia/fisiologia , Escherichia coli/fisiologia , Modelos Biológicos
14.
NPJ Syst Biol Appl ; 6(1): 32, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082352

RESUMO

During embryogenesis, cells repeatedly divide and dynamically change their positions in three-dimensional (3D) space. A robust and accurate algorithm to acquire the 3D positions of the cells would help to reveal the mechanisms of embryogenesis. To acquire quantitative criteria of embryogenesis from time-series 3D microscopic images, image processing algorithms such as segmentation have been applied. Because the cells in embryos are considerably crowded, an algorithm to segment individual cells in detail and accurately is needed. To quantify the nuclear region of every cell from a time-series 3D fluorescence microscopic image of living cells, we developed QCANet, a convolutional neural network-based segmentation algorithm for 3D fluorescence bioimages. We demonstrated that QCANet outperformed 3D Mask R-CNN, which is currently considered as the best algorithm of instance segmentation. We showed that QCANet can be applied not only to developing mouse embryos but also to developing embryos of two other model species. Using QCANet, we were able to extract several quantitative criteria of embryogenesis from 11 early mouse embryos. We showed that the extracted criteria could be used to evaluate the differences between individual embryos. This study contributes to the development of fundamental approaches for assessing embryogenesis on the basis of extracted quantitative criteria.


Assuntos
Núcleo Celular/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/diagnóstico por imagem , Desenvolvimento Embrionário , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Animais , Embrião de Mamíferos/embriologia , Camundongos , Microscopia de Fluorescência
15.
Phys Rev E ; 101(4-1): 042205, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422804

RESUMO

The reliability of logical operations is indispensable for the reliable operation of computational systems. Since the downsizing of microfabrication generates nonnegligible noise in these systems, a new approach for designing noise-immune gates is required. In this paper, we demonstrate that noise-immune gates can be designed by combining Bayesian inference theory with the idea of computation over noisy channels. To reveal their practical advantages, the performance of these gates is evaluated in comparison with a stochastic resonance-based gate proposed previously. We also demonstrate that, in a high noise-level situation, this approach for computation can be better than a conventional one that conducts information transmission and computation separately.

16.
Chaos ; 30(1): 011104, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32013460

RESUMO

Intracellular reactions are intrinsically stochastic. Nonetheless, cells can reliably respond to the changing environment by sensing their target molecules sensitively and specifically, even with the existence of abundant structurally-similar non-target molecules. The mechanism of how the cells can balance and achieve such different characteristics is not yet fully understood. In this work, we demonstrate that these characteristics can be attained by a ligand-induced stochastic cluster formation of receptors via the noise-induced symmetry breaking, in which the intrinsic stochasticity works to enhance sensitivity and specificity. We also show that the noise-induced cluster formation enables cells to detect the target ligand reliably by compensating the abundant non-target ligands in the environment. The proposed mechanism may lead to a deeper understanding of a biological function of the receptor clustering and provide an alternative candidate for the reliable ligand detection to the kinetic proofreading.


Assuntos
Simulação por Computador , Modelos Biológicos , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Ligantes
17.
Bioinformatics ; 36(9): 2829-2838, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971568

RESUMO

SUMMARY: Phenotypic variability in a population of cells can work as the bet-hedging of the cells under an unpredictably changing environment, the typical example of which is the bacterial persistence. To understand the strategy to control such phenomena, it is indispensable to identify the phenotype of each cell and its inheritance. Although recent advancements in microfluidic technology offer us useful lineage data, they are insufficient to directly identify the phenotypes of the cells. An alternative approach is to infer the phenotype from the lineage data by latent-variable estimation. To this end, however, we must resolve the bias problem in the inference from lineage called survivorship bias. In this work, we clarify how the survivorship bias distorts statistical estimations. We then propose a latent-variable estimation algorithm without the survivorship bias from lineage trees based on an expectation-maximization (EM) algorithm, which we call lineage EM algorithm (LEM). LEM provides a statistical method to identify the traits of the cells applicable to various kinds of lineage data. AVAILABILITY AND IMPLEMENTATION: An implementation of LEM is available at https://github.com/so-nakashima/Lineage-EM-algorithm. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Linhagem da Célula , Fenótipo
18.
Commun Biol ; 2: 444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815199

RESUMO

Thymic crosstalk, a set of reciprocal regulations between thymocytes and the thymic environment, is relevant for orchestrating appropriate thymocyte development as well as thymic recovery from various exogenous insults. In this work, interactions shaping thymic crosstalk and the resultant dynamics of thymocytes and thymic epithelial cells are inferred based on quantitative analysis and modeling of the recovery dynamics induced by irradiation. The analysis identifies regulatory interactions consistent with known molecular evidence and reveals their dynamic roles in the recovery process. Moreover, the analysis also predicts, and a subsequent experiment verifies, a previously unrecognized regulation of CD4+CD8+ double positive thymocytes which temporarily increases their proliferation rate upon the decrease in their population size. Our model establishes a pivotal step towards the dynamic understanding of thymic crosstalk as a regulatory network system.


Assuntos
Comunicação Celular , Microambiente Celular , Modelos Biológicos , Timócitos/metabolismo , Timo/fisiologia , Algoritmos , Animais , Proliferação de Células , Células Epiteliais/metabolismo , Camundongos , Radiação Ionizante , Recuperação de Função Fisiológica , Timócitos/efeitos da radiação , Timo/efeitos da radiação
19.
Phys Rev E ; 99(1-1): 012413, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780204

RESUMO

We construct a pathwise formulation for a multitype age-structured population dynamics, which involves an age-dependent cell replication and transition of gene- or phenotypes. By employing the formulation, we derive a variational representation of the stationary population growth rate; the representation comprises a tradeoff relation between growth effects and a single-cell intrinsic dynamics described by a semi-Markov process. This variational representation leads to a response relation of the stationary population growth rate, in which statistics on a retrospective history work as the response coefficients. These results contribute to predicting and controlling growing populations based on experimentally observed cell-lineage information.


Assuntos
Modelos Biológicos , Fenótipo , Dinâmica Populacional , Morte Celular , Análise de Célula Única
20.
Mol Cell Biol ; 39(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30718362

RESUMO

The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.


Assuntos
Cromatina/metabolismo , Cromatina/ultraestrutura , RNA de Transferência/genética , Sítios de Ligação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , Cromossomos/genética , Cromossomos/metabolismo , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFIII/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...