Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(11): 1486-1502.e9, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922879

RESUMO

Organ regeneration requires dynamic cell interactions to reestablish cell numbers and tissue architecture. While we know the identity of progenitor cells that replace lost tissue, the transient states they give rise to and their role in repair remain elusive. Here, using multiple injury models, we find that alveolar fibroblasts acquire distinct states marked by Sfrp1 and Runx1 that influence tissue remodeling and reorganization. Unexpectedly, ablation of alveolar epithelial type-1 (AT1) cells alone is sufficient to induce tissue remodeling and transitional states. Integrated scRNA-seq followed by genetic interrogation reveals RUNX1 is a key driver of fibroblast states. Importantly, the ectopic induction or accumulation of epithelial transitional states induce rapid formation of transient alveolar fibroblasts, leading to organ-wide fibrosis. Conversely, the elimination of epithelial or fibroblast transitional states or RUNX1 loss, leads to tissue simplification resembling emphysema. This work uncovered a key role for transitional states in orchestrating tissue topologies during regeneration.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Pulmão , Células Epiteliais , Células-Tronco , Comunicação Celular
2.
Front Bioeng Biotechnol ; 11: 1289686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026894

RESUMO

Exoskeletons can protect users' lumbar spine and reduce the risk of low back injury during manual lifting tasks. Although many exoskeletons have been developed, their adoptability is limited by their task- and movement-specific effects on reducing burden. Many studies have evaluated the safety and effectiveness of an exoskeleton using the peak/mean values of biomechanical variables, whereas the performance of the exoskeleton at other time points of the movement has not been investigated in detail. A functional analysis, which presents discrete time-series data as continuous functions, makes it possible to highlight the features of the movement waveform and determine the difference in each variable at each time point. This study investigated an assessment method for exoskeletons based on functional ANOVA, which made it possible to quantify the differences in the biomechanical variables throughout the movement when using an exoskeleton. Additionally, we developed a method based on the interpolation technique to estimate the assistive torque of an exoskeleton. Ten men lifted a 10-kg box under symmetric and asymmetric conditions five times each. Lumbar load was significantly reduced during all phases (flexion, lifting, and laying) under both conditions. Additionally, reductions in kinematic variables were observed, indicating the exoskeleton's impact on motion restrictions. Moreover, the overlap F-ratio curves of the lumbar load and kinematic variables imply that exoskeletons reduce the lumbar load by restricting the kinematic variables. The results suggested that at smaller trunk angles (<25°), an exoskeleton neither significantly reduces the lumbar load nor restricts trunk movement. Our findings will help increasing exoskeleton safety and designing effective products for reducing lumbar injury risks.

3.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824904

RESUMO

The ontogenetic composition of tissue-resident macrophages following injury, environmental exposure, or experimental depletion can be altered upon re-establishment of homeostasis. However, the impact of altered resident macrophage ontogenetic milieu on subsequent immune responses is poorly understood. Hence, we assessed the effect of macrophage ontogeny alteration following return to homeostasis on subsequent allergic airway responses to house dust mites (HDM). Using lineage tracing, we confirmed alveolar and interstitial macrophage ontogeny and their replacement by bone marrow-derived macrophages following LPS exposure. This alteration in macrophage ontogenetic milieu reduced allergic airway responses to HDM challenge. In addition, we defined a distinct population of resident-derived interstitial macrophages expressing allergic airway disease genes, located adjacent to terminal bronchi, and reduced by prior LPS exposure. These findings support that the ontogenetic milieu of pulmonary macrophages is a central factor in allergic airway responses and has implications for how prior environmental exposures impact subsequent immune responses and the development of allergy.

4.
Cell Rep ; 41(6): 111610, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351395

RESUMO

In both humans and mice, repair of acute kidney injury is worse in males than in females. Here, we provide evidence that this sexual dimorphism results from sex differences in ferroptosis, an iron-dependent, lipid-peroxidation-driven regulated cell death. Using genetic and single-cell transcriptomic approaches in mice, we report that female sex confers striking protection against ferroptosis, which was experimentally induced in proximal tubular (PT) cells by deleting glutathione peroxidase 4 (Gpx4). Single-cell transcriptomic analyses further identify the NFE2-related factor 2 (NRF2) antioxidant protective pathway as a female resilience mechanism against ferroptosis. Genetic inhibition and pharmacological activation studies show that NRF2 controls PT cell fate and plasticity by regulating ferroptosis. Importantly, pharmacological NRF2 activation protects male PT cells from ferroptosis and improves cellular plasticity as in females. Our data highlight NRF2 as a potential therapeutic target to prevent failed renal repair after acute kidney injury in both sexes by modulating cellular plasticity.


Assuntos
Injúria Renal Aguda , Ferroptose , Humanos , Feminino , Masculino , Camundongos , Animais , Caracteres Sexuais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Rim/metabolismo
5.
iScience ; 25(10): 105114, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36185377

RESUMO

Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown. Thick tissue imaging and electron microscopy revealed that a single AT2 can have multiple apical domains that enface multiple alveoli. AT2s gradually establish multi-apical domains post-natally, and they are maintained throughout life. Lineage tracing, live imaging, and selective cell ablation revealed that AT2s dynamically reorganize multi-apical domains during injury repair. Single-cell transcriptome signatures of residual AT2s revealed changes in cytoskeleton and cell migration. Significantly, cigarette smoke and oncogene activation lead to dysregulation of multi-apical domains. We propose that the multi-apical domains of AT2s enable them to be poised to support the regeneration of a large array of alveolar sacs.

6.
Development ; 149(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36134690

RESUMO

Heart regeneration requires multiple cell types to enable cardiomyocyte (CM) proliferation. How these cells interact to create growth niches is unclear. Here, we profile proliferation kinetics of cardiac endothelial cells (CECs) and CMs in the neonatal mouse heart and find that they are spatiotemporally coupled. We show that coupled myovascular expansion during cardiac growth or regeneration is dependent upon VEGF-VEGFR2 signaling, as genetic deletion of Vegfr2 from CECs or inhibition of VEGFA abrogates both CEC and CM proliferation. Repair of cryoinjury displays poor spatial coupling of CEC and CM proliferation. Boosting CEC density after cryoinjury with virus encoding Vegfa enhances regeneration. Using Mendelian randomization, we demonstrate that circulating VEGFA levels are positively linked with human myocardial mass, suggesting that Vegfa can stimulate human cardiac growth. Our work demonstrates the importance of coupled CEC and CM expansion and reveals a myovascular niche that may be therapeutically targeted for heart regeneration.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Animais , Proliferação de Células , Células Endoteliais/fisiologia , Coração/fisiologia , Humanos , Recém-Nascido , Camundongos , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Nature ; 604(7904): 111-119, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355018

RESUMO

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases1-4. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized. These include airway-associated LGR5+ fibroblasts and TRB-specific alveolar type-0 (AT0) cells and TRB secretory cells (TRB-SCs). Connectome maps and organoid-based co-cultures reveal that LGR5+ fibroblasts form a signalling hub in the airway niche. AT0 cells and TRB-SCs are conserved in primates and emerge dynamically during human lung development. Using a non-human primate model of lung injury, together with human organoids and tissue specimens, we show that alveolar type-2 cells in regenerating lungs transiently acquire an AT0 state from which they can differentiate into either alveolar type-1 cells or TRB-SCs. This differentiation programme is distinct from that identified in the mouse lung5-7. Our study also reveals mechanisms that drive the differentiation of the bipotent AT0 cell state into normal or pathological states. In sum, our findings revise human lung cell maps and lineage trajectories, and implicate an epithelial transitional state in primate lung regeneration and disease.


Assuntos
Linhagem da Célula , Pulmão , Células-Tronco , Células Epiteliais Alveolares , Animais , Diferenciação Celular , Conectoma , Fibroblastos , Perfilação da Expressão Gênica , Humanos , Pulmão/citologia , Pneumopatias , Camundongos , Organoides , Primatas , Regeneração , Análise de Célula Única , Células-Tronco/citologia
8.
Adv Biol (Weinh) ; 6(6): e2101309, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297567

RESUMO

Nonreducing disaccharide trehalose is used as a stabilizer and humectant in various products and is a potential medicinal drug, showing curative effects on the animal models of various diseases. However, its use is limited as it is hydrolyzed by trehalase, a widely expressed enzyme in multiple organisms. Several trehalose analogs are prepared, including a microbial metabolite 4-trehalosamine, and their high biological stability is confirmed. For further analysis, 4-trehalosamine is selected as it shows high producibility. Compared with trehalose, 4-trehalosamine exhibits better or comparable protective activities and a high buffer capacity around the neutral pH. Another advantage of 4-trehalosamine is its chemical modifiability: simple reactions produce its various derivatives. Labeled probes and detergents are synthesized in one-pot reactions to exemplify the feasibility of their production, and their utility is confirmed for their respective applications. The labeled probes are used for mycobacterial staining. Although the derivative detergents can be effectively used in membrane protein research, long-chain detergents show 1000-3000-fold stronger autophagy-inducing activity in cultured cells than trehalose and are expected to become a drug lead and research reagent. These results indicate that 4-trehalosamine is a useful trehalose substitute for various purposes and a material to produce new useful derivative substances.


Assuntos
Detergentes , Trealose , Animais , Dissacarídeos , Trealase/metabolismo , Trealose/análogos & derivados , Trealose/farmacologia
9.
Dev Cell ; 57(3): 310-328.e9, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134344

RESUMO

Oncogenic Kras induces a hyper-proliferative state that permits cells to progress to neoplasms in diverse epithelial tissues. Depending on the cell of origin, this also involves lineage transformation. Although a multitude of downstream factors have been implicated in these processes, the precise chronology of molecular events controlling them remains elusive. Using mouse models, primary human tissues, and cell lines, we show that, in Kras-mutant alveolar type II cells (AEC2), FOSL1-based AP-1 factor guides the mSWI/SNF complex to increase chromatin accessibility at genomic loci controlling the expression of genes necessary for neoplastic transformation. We identified two orthogonal processes in Kras-mutant distal airway club cells. The first promoted their transdifferentiation into an AEC2-like state through NKX2.1, and the second controlled oncogenic transformation through the AP-1 complex. Our results suggest that neoplasms retain an epigenetic memory of their cell of origin through cell-type-specific transcription factors. Our analysis showed that a cross-tissue-conserved AP-1-dependent chromatin remodeling program regulates carcinogenesis.


Assuntos
Plasticidade Celular/genética , Epigênese Genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Epiteliais Alveolares/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células/genética , Epigenoma , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Mutantes/metabolismo , Mutação/genética , Neoplasias/patologia , Nucleossomos/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição AP-1/metabolismo
10.
Adv Sci (Weinh) ; 8(19): e2004673, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34378358

RESUMO

Colorectal cancer (CRC) metastasizes mainly to the liver, which accounts for the majority of CRC-related deaths. Here it is shown that metastatic cells undergo specific chromatin remodeling in the liver. Hepatic growth factor (HGF) induces phosphorylation of PU.1, a pioneer factor, which in turn binds and opens chromatin regions of downstream effector genes. PU.1 increases histone acetylation at the DPP4 locus. Precise epigenetic silencing by CRISPR/dCas9KRAB or CRISPR/dCas9HDAC revealed that individual PU.1-remodeled regulatory elements collectively modulate DPP4 expression and liver metastasis growth. Genetic silencing or pharmacological inhibition of each factor along this chromatin remodeling axis strongly suppressed liver metastasis. Therefore, microenvironment-induced epimutation is an important mechanism for metastatic tumor cells to grow in their new niche. This study presents a potential strategy to target chromatin remodeling in metastatic cancer and the promise of repurposing drugs to treat metastasis.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Neoplasias Colorretais/patologia , Dipeptidil Peptidase 4/genética , Fator de Crescimento de Hepatócito/genética , Neoplasias Hepáticas/secundário , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Dipeptidil Peptidase 4/metabolismo , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
11.
Elife ; 102021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34279220

RESUMO

Overwhelming lipid peroxidation induces ferroptotic stress and ferroptosis, a non-apoptotic form of regulated cell death that has been implicated in maladaptive renal repair in mice and humans. Using single-cell transcriptomic and mouse genetic approaches, we show that proximal tubular (PT) cells develop a molecularly distinct, pro-inflammatory state following injury. While these inflammatory PT cells transiently appear after mild injury and return to their original state without inducing fibrosis, after severe injury they accumulate and contribute to persistent inflammation. This transient inflammatory PT state significantly downregulates glutathione metabolism genes, making the cells vulnerable to ferroptotic stress. Genetic induction of high ferroptotic stress in these cells after mild injury leads to the accumulation of the inflammatory PT cells, enhancing inflammation and fibrosis. Our study broadens the roles of ferroptotic stress from being a trigger of regulated cell death to include the promotion and accumulation of proinflammatory cells that underlie maladaptive repair.


Assuntos
Células Epiteliais/metabolismo , Rim/lesões , Rim/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/terapia , Animais , Morte Celular , Ferroptose/genética , Fibrose/genética , Expressão Gênica , Inflamação/genética , Ferro/metabolismo , Rim/patologia , Peroxidação de Lipídeos , Masculino , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Medicina Regenerativa
12.
Nat Med ; 27(3): 546-559, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33654293

RESUMO

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Assuntos
COVID-19/epidemiologia , COVID-19/genética , Interações Hospedeiro-Patógeno/genética , SARS-CoV-2/fisiologia , Análise de Sequência de RNA/estatística & dados numéricos , Análise de Célula Única/estatística & dados numéricos , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Catepsina L/genética , Catepsina L/metabolismo , Conjuntos de Dados como Assunto/estatística & dados numéricos , Demografia , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Análise de Sequência de RNA/métodos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Análise de Célula Única/métodos
13.
Am J Respir Crit Care Med ; 203(10): 1275-1289, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321047

RESUMO

Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Humanos
14.
Elife ; 92020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179596

RESUMO

We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.


Assuntos
Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Análise de Célula Única/métodos , Animais , Células Cultivadas , Humanos , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Plasmídeos , Ratos
15.
Cell Stem Cell ; 27(6): 890-904.e8, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33128895

RESUMO

Coronavirus infection causes diffuse alveolar damage leading to acute respiratory distress syndrome. The absence of ex vivo models of human alveolar epithelium is hindering an understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here, we report a feeder-free, scalable, chemically defined, and modular alveolosphere culture system for the propagation and differentiation of human alveolar type 2 cells/pneumocytes derived from primary lung tissue. Cultured pneumocytes express the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme receptor type-2 (ACE2) and can be infected with virus. Transcriptome and histological analysis of infected alveolospheres mirror features of COVID-19 lungs, including emergence of interferon (IFN)-mediated inflammatory responses, loss of surfactant proteins, and apoptosis. Treatment of alveolospheres with IFNs recapitulates features of virus infection, including cell death. In contrast, alveolospheres pretreated with low-dose IFNs show a reduction in viral replication, suggesting the prophylactic effectiveness of IFNs against SARS-CoV-2. Human stem cell-based alveolospheres, thus, provide novel insights into COVID-19 pathogenesis and can serve as a model for understanding human respiratory diseases.


Assuntos
Células-Tronco Adultas/virologia , Células Epiteliais Alveolares/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , Interferons/farmacologia , SARS-CoV-2/imunologia , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/enzimologia , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/enzimologia , Células Epiteliais Alveolares/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/fisiopatologia , Técnicas de Cultura de Células , Diferenciação Celular , Feminino , Humanos , Inflamação , Masculino , Camundongos , Receptores de Coronavírus/metabolismo , Transcriptoma , Replicação Viral
16.
Nat Cell Biol ; 22(8): 934-946, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661339

RESUMO

Stem cells undergo dynamic changes in response to injury to regenerate lost cells. However, the identity of transitional states and the mechanisms that drive their trajectories remain understudied. Using lung organoids, multiple in vivo repair models, single-cell transcriptomics and lineage tracing, we find that alveolar type-2 epithelial cells undergoing differentiation into type-1 cells acquire pre-alveolar type-1 transitional cell state (PATS) en route to terminal maturation. Transitional cells undergo extensive stretching during differentiation, making them vulnerable to DNA damage. Cells in the PATS show an enrichment of TP53, TGFß, DNA-damage-response signalling and cellular senescence. Gain and loss of function as well as genomic binding assays revealed a direct transcriptional control of PATS by TP53 signalling. Notably, accumulation of PATS-like cells in human fibrotic lungs was observed, suggesting persistence of the transitional state in fibrosis. Our study thus implicates a transient state associated with senescence in normal epithelial tissue repair and its abnormal persistence in disease conditions.


Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Fibrose Pulmonar/patologia , Células-Tronco Adultas/patologia , Células Epiteliais Alveolares/patologia , Animais , Linhagem da Célula , Forma Celular , Senescência Celular , Dano ao DNA , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides , Fibrose Pulmonar/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
17.
Elife ; 92020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32301704

RESUMO

Renal macrophages represent a highly heterogeneous and specialized population of myeloid cells with mixed developmental origins from the yolk-sac and hematopoietic stem cells (HSC). They promote both injury and repair by regulating inflammation, angiogenesis, and tissue remodeling. Recent reports highlight differential roles for ontogenically distinct renal macrophage populations in disease. However, little is known about how these populations change over time in normal, uninjured kidneys. Prior reports demonstrated a high proportion of HSC-derived macrophages in the young adult kidney. Unexpectedly, using genetic fate-mapping and parabiosis studies, we found that yolk-sac-derived macrophages progressively expand in number with age and become a major contributor to the renal macrophage population in older mice. This chronological shift in macrophage composition involves local cellular proliferation and recruitment from circulating progenitors and may contribute to the distinct immune responses, limited reparative capacity, and increased disease susceptibility of kidneys in the elderly population.


Older people are more likely to develop kidney disease, which increases their risk of having other conditions such as a heart attack or stroke and, in some cases, can lead to their death. Older kidneys are less able to repair themselves after an injury, which may help explain why aging contributes to kidney disease. Another possibility is that older kidneys are more susceptible to excessive inflammation. Learning more about the processes that lead to kidney inflammation in older people might lead to better ways to prevent or treat their kidney disease. Immune cells called macrophages help protect the body from injury and disease. They do this by triggering inflammation, which aides healing. Too much inflammation can be harmful though, making macrophages a prime suspect in age-related kidney harm. Studying these immune cells in the kidney and how they change over the lifespan could help scientists to better understand age-related kidney disease. Now, Ide, Yahara et al. show that one type of macrophage is better at multiplying in older kidneys. In the experiments, mice were genetically engineered to make a fluorescent red protein in one kind of macrophage. This allowed Ide, Yahara et al. to track these immune cells as the mice aged. The experiments showed that this subgroup of cells is first produced when the mice are embryos. They stay in the mouse kidneys into adulthood, and are so prolific that, over time, they eventually become the most common macrophage in older kidneys. The fact that one type of embryonically derived macrophage takes over with age may explain the increased inflammation and reduced repair capacity seen in aging kidneys. More studies will help scientists to understand how these particular cells contribute to age-related changes in susceptibility to kidney disease.


Assuntos
Envelhecimento/imunologia , Rim/imunologia , Macrófagos/fisiologia , Saco Vitelino/citologia , Animais , Receptor 1 de Quimiocina CX3C/análise , Camundongos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/análise
18.
Elife ; 82019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31829939

RESUMO

Human mutations in the dystroglycan complex (DGC) result in not only muscular dystrophy but also cognitive impairments. However, the molecular architecture critical for the synaptic organization of the DGC in neurons remains elusive. Here, we report Inhibitory Synaptic protein 1 (InSyn1) is a critical component of the DGC whose loss alters the composition of the GABAergic synapses, excitatory/inhibitory balance in vitro and in vivo, and cognitive behavior. Association of InSyn1 with DGC subunits is required for InSyn1 synaptic localization. InSyn1 null neurons also show a significant reduction in DGC and GABA receptor distribution as well as abnormal neuronal network activity. Moreover, InSyn1 null mice exhibit elevated neuronal firing patterns in the hippocampus and deficits in fear conditioning memory. Our results support the dysregulation of the DGC at inhibitory synapses and altered neuronal network activity and specific cognitive tasks via loss of a novel component, InSyn1.


Assuntos
Distroglicanas/metabolismo , Neurônios GABAérgicos/metabolismo , Hipocampo/fisiologia , Memória , Sinapses/metabolismo , Sinapsinas/metabolismo , Animais , Células Cultivadas , Cognição , Humanos , Camundongos Endogâmicos C57BL
19.
Stem Cell Reports ; 12(4): 657-666, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30930244

RESUMO

Inflammatory responses are known to facilitate tissue recovery following injury. However, the precise mechanisms that enhance lung alveolar regeneration remain unclear. Here, using an organoid-based screening assay, we find that interleukin-1 (IL-1) and tumor necrosis factor α (TNFα) enhance the proliferation of AEC2s while maintaining their differentiation capacity. Furthermore, we find that expression of IL-1ß and TNFα are induced in the AEC2 niche following influenza-induced injury in vivo, and lineage tracing analysis revealed that surviving AEC2s around the damaged area contribute to alveolar regeneration. Through genetic and pharmacological modulation of multiple components of the IL-1-nuclear factor κB (NF-κB) signaling axis, we show that cell-intrinsic as well as stromal mediated IL-1 signaling are essential for AEC2 mediated lung regeneration. Taken together, we propose that the IL-1/TNFα-NF-κB signaling axis functions as a component of an inflammation-associated niche to regulate proliferation of surviving AEC2s and promote lung regeneration.


Assuntos
Microambiente Celular , Interleucina-1/metabolismo , Alvéolos Pulmonares/fisiologia , Regeneração , Fator de Necrose Tumoral alfa/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Microambiente Celular/genética , Citocinas/metabolismo , Imunofluorescência , Humanos , Mediadores da Inflamação , Influenza Humana , NF-kappa B/metabolismo , Regeneração/genética , Transdução de Sinais
20.
Dev Cell ; 45(4): 425-426, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29787707

RESUMO

Organisms have developed cellular "antennas" to sense, interpret, and integrate environmental stimuli. In a recent issue of Science, Sui et al. (2018) demonstrate that discrete clusters of pulmonary neuroendocrine cells in the lung can sense airborne allergens and relay signals to stimulate immune cells and induce tissue/organ-wide responses.


Assuntos
Pulmão , Células Neuroendócrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...