Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37512203

RESUMO

This paper deals with the effect of the character of the water used for the water storage of concrete test specimens on the results of tests for resistance to de-icing chemicals. Two experiments were conducted to investigate the effect of the content of free CO2 in water and leaching of calcium hydroxide from concrete on the test results. In the first experiment, the resistance of mortars to water and de-icing chemicals was investigated. It was found that the character of the water storage, i.e., fresh water vs. previously used water, can significantly affect the test results. The second experiment focused on investigating the effect of the content of free CO2 in water on the test results. It was found that the content of free CO2 in the water can statistically significantly influence the test results. In conclusion, the paper shows that the character of the water used for water storage of concrete test specimens and the content of free CO2 in water are essential factors that can significantly affect the results of concrete resistance tests to de-icing chemicals. Further research is needed to understand these influences and their potential use to improve the resistance of concrete.

2.
Materials (Basel) ; 16(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37176410

RESUMO

Two sizes of test samples were selected to investigate the effect of size on the level of degradation. The smaller test specimens had dimensions of 40 × 40 × 160 mm, and the larger ones had dimensions of 100 × 100 × 400 mm. Both sizes of test specimens were always made of the same mortar. In one case, Blast Furnace Cement was chosen as the binder. In the other case, it was an alkali-activated material as a possibly more environmentally economical substitute. Both types of material were deposited in three degrading solutions: magnesium sulphate, ammonium nitrate and acetic acid. The reference set was stored in a water bath. After six months in the degradation solutions, a static elastic modulus was determined for the specimens during this test, and the acoustic emission was measured. Acoustic emission parameters were evaluated: the number of hits, the amplitude magnitude and a slope from the amplitude magnitude versus time (this slope should correspond to the Kaiser effect). For most of the parameters studied, the size effect was more evident for the more degraded specimens, i.e., those placed in aggressive solutions. The approximate location of emerging defects was also determined using linear localisation for smaller specimens where the degradation effect was more significant. In more aggressive environments (acetic acid, ammonium nitrate), the higher resistance of materials based on alkaline-activated slag was more evident, even in the case of larger test bodies. The experiments show that the acoustic emission results agree with the results of the static modulus of elasticity.

3.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771903

RESUMO

This paper presents the results of an experimental program aimed at the assessment of the freeze-thaw (F-T) resistance of concrete based on the evaluation of fracture tests accompanied by acoustic emission measurements. Two concretes of similar mechanical characteristics were manufactured for the experiment. The main difference between the C1 and C2 concrete was in the total number of air voids and in the A300 parameter, where both parameters were higher for C1 by about 35% and 52%, respectively. The evaluation of the fracture characteristics was performed on the basis of experimentally recorded load-deflection and load-crack mouth opening displacement diagrams using two different approaches: linear fracture mechanics completed with the effective crack model and the double-K model. The results show that both approaches gave similar results, especially if the nonlinear behavior before the peak load was considered. According to the results, it can be stated that continuous AE measurement is beneficial for the assessment of the extent of concrete deterioration, and it suitably supplements the fracture test evaluation. A comparison of the results of fracture tests with the resonance method and splitting tensile strength test shows that all testing methods led to the same conclusion, i.e., the C1 concrete was more F-T-resistant than C2. However, the fracture test evaluation provided more detailed information about the internal structure deterioration due to the F-T exposure.

4.
Materials (Basel) ; 14(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807866

RESUMO

This manuscript deals with a complex analysis of acoustic emission signals that were recorded during freeze-thaw cycles in test specimens produced from air-entrained concrete. An assessment of the resistance of concrete to the effects of freezing and thawing was conducted on the basis of a signal analysis. Since the experiment simulated testing of concrete in a structure, a concrete block with the height of 2.4 m and width of 1.8 m was produced to represent a real structure. When the age of the concrete was two months, samples were obtained from the block by core drilling and were subsequently used to produce test specimens. Testing of freeze-thaw resistance of concrete employed both destructive and non-destructive methods including the measurement of acoustic emission, which took place directly during the freeze-thaw cycles. The recorded acoustic emission signals were then meticulously analysed. The aim of the conducted experiments was to verify whether measurement using the acoustic emission method during Freeze-thaw (F-T) cycles are more sensitive to the degree of damage of concrete than the more commonly employed construction testing methods. The results clearly demonstrate that the acoustic emission method can reveal changes (e.g., minor cracks) in the internal structure of concrete, unlike other commonly used methods. The analysis of the acoustic emission signals using a fast Fourier transform revealed a significant shift of the dominant frequency towards lower values when the concrete was subjected to freeze-thaw cycling.

5.
Materials (Basel) ; 13(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709159

RESUMO

The paper describes an experiment focusing on the way the material system influences the bond strength of large-format tiles installed on concrete substrate during mechanical loading under conditions that correspond to real-life application. This involves a controllable mechanical load applied over an area of a test model while observing its condition using non-destructive methods (ultrasonic pulse velocity test, acoustic emission method, strain measurement, and acoustic tracing). The model consisted of a concrete slab onto which were mounted four different systems with large-format tiles with the dimensions of 3 m × 1 m. The combinations differed in the thickness of the tile, the adhesive, and whether or not a fabric membrane was included in the adhesive bed. The experiment showed that the loading caused no damage to the ceramic tile. All the detected failures took place in the adhesive layer or in the concrete slab.

6.
Materials (Basel) ; 12(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454919

RESUMO

This paper focuses on the experimental determination of the shrinkage process in Self-Compacting High-Performance Concrete (SCC HPC) exposed to dry air and autogenous conditions. Special molds with dimensions of 100 mm × 60 mm × 1000 mm and 50 mm × 50 mm × 300 mm equipped with one movable head are used for the measurement. The main aim of this study is to compare the shrinkage curves of SCC HPC, which were obtained by using different measurement devices and for specimens of different sizes. In addition, two different times t0 are considered for the data evaluation to investigate the influence of this factor on the absolute value of shrinkage. In the first case, t0 is the time of the start of measurement, in the second case, t0 is the setting time. The early-shrinkage (48 h) is continuously measured using inductive sensors leant against the movable head and with strain gauges embedded inside the test specimen. To monitor the long term shrinkage, the specimens are equipped with special markers, embedded into the specimens' upper surface or ends. These markers serve as measurement bases for the measurement using mechanical strain gauges. The test specimens are demolded after 48 h and the long term shrinkage is monitored using the embedded strain gauges (inside the specimens) and mechanical strain gauges that are placed, in regular intervals, onto the markers embedded into the specimens' surface or ends. The results show that both types of measurement equipment give a similar result in the case of early age measurement, especially for the specimens cured under autogenous conditions. However, the early age and especially long term measurement are influenced by the position of the measurement sensors, particularly in the case of specimens cured under dry air conditions. It was proven that the time t0 have a fundamental influence on the final values of the shrinkage of investigated SCC HPC and have a significant impact on the conclusions on the size effect.

7.
Materials (Basel) ; 12(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450816

RESUMO

During the construction of concrete structures, it is often useful to know compressive strength at an early age. This is an amount of strength required for the safe removal of formwork, also known as stripping strength. It is certainly helpful to determine this strength non-destructively, i.e., without any invasive steps that would damage the structure. Second only to the ultrasonic pulse velocity test, the rebound hammer test is the most common NDT method currently used for this purpose. However, estimating compressive strength using general regression models can often yield inaccurate results. The experiment results show that the compressive strength of any concrete can be estimated using one's own newly created regression model. A traditionally constructed regression model can predict the strength value with 50% reliability, or when two-sided confidence bands are used, with 95% reliability. However, civil engineers usually work with the so-called characteristic value defined as a 5% quantile. Therefore, it appears suitable to adjust conventional methods in order to achieve a regression model with 95% one-sided reliability. This paper describes a simple construction of such a characteristic curve. The results show that the characteristic curve created for the concrete in question could be a useful tool even outside of practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...