Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 56(1): 334-343, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27936610

RESUMO

FKBP12, a small human enzyme, aids protein folding by catalyzing cis-trans isomerization of peptidyl-prolyl bonds, and is involved in cell signaling pathways, calcium regulation, and the immune response. The underlying molecular mechanisms are not fully understood, but it is well-known that aromatic residues in the active site and neighboring loops are important for substrate binding and catalysis. Here we report micro- to millisecond exchange dynamics of aromatic side chains in the active site region of ligand-free FKBP12, involving a minor state population of 0.5% and an exchange rate of 3600 s-1, similar to previous results for the backbone and methyl-bearing side chains. The exchange process involves tautomerization of H87. In the major state H87 is highly flexible and occupies the common HNε2 tautomer, while in the minor state it occupies the rare HNδ1 tautomer, which typically requires stabilization by specific interactions, such as hydrogen bonds. This finding suggests that the exchange process is coupled to a rearrangement of the hydrogen bond network around H87. Upon addition of the active-site inhibitor FK506 the exchange of all aromatic residues is quenched, with exception of H87. The H87 resonances are broadened beyond detection, suggesting that interconversion between tautomers prevail in the FK506-bound state. While key active-site residues undergo conformational exchange in the apo state, the exchange rate is considerably faster than the catalytic turnover, as determined herein by Michaelis-Menten type analysis of NMR line shapes and chemical shifts. We discuss alternative interpretations of this observation in terms of FKBP12 function.


Assuntos
Aminoácidos Aromáticos/química , Domínio Catalítico , Conformação Proteica , Proteína 1A de Ligação a Tacrolimo/química , Aminoácidos Aromáticos/metabolismo , Sítios de Ligação/genética , Histidina/química , Histidina/metabolismo , Humanos , Ligação de Hidrogênio , Isomerismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Ligação Proteica , Tacrolimo/química , Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo
2.
PLoS One ; 11(6): e0157070, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276069

RESUMO

Cyclophilins are ubiquitous cis-trans-prolyl isomerases (PPIases) found in all kingdoms of life. Here, we identify a novel family of cyclophilins, termed AquaCyps, which specifically occurs in marine Alphaproteobacteria, but not in related terrestric species. In addition to a canonical PPIase domain, AquaCyps contain large extensions and insertions. The crystal structures of two representatives from Hirschia baltica, AquaCyp293 and AquaCyp300, reveal the formation of a compact domain, the NIC domain, by the N- and C-terminal extensions together with a central insertion. The NIC domain adopts a novel mixed alpha-helical, beta-sheet fold that is linked to the cyclophilin domain via a conserved disulfide bond. In its overall fold, AquaCyp293 resembles AquaCyp300, but the two proteins utilize distinct sets of active site residues, consistent with differences in their PPIase catalytic properties. While AquaCyp293 is a highly active general PPIase, AquaCyp300 is specific for hydrophobic substrate peptides and exhibits lower overall activity.


Assuntos
Alphaproteobacteria/enzimologia , Proteínas de Bactérias/química , Ciclofilinas/química , Catálise , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos , Estrutura Secundária de Proteína
3.
J Biol Chem ; 290(6): 3278-92, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25525259

RESUMO

Secretion of proteins into the membrane-cell wall space is essential for cell wall biosynthesis and pathogenicity in Gram-positive bacteria. Folding and maturation of many secreted proteins depend on a single extracellular foldase, the PrsA protein. PrsA is a 30-kDa protein, lipid anchored to the outer leaflet of the cell membrane. The crystal structure of Bacillus subtilis PrsA reveals a central catalytic parvulin-type prolyl isomerase domain, which is inserted into a larger composite NC domain formed by the N- and C-terminal regions. This domain architecture resembles, despite a lack of sequence conservation, both trigger factor, a ribosome-binding bacterial chaperone, and SurA, a periplasmic chaperone in Gram-negative bacteria. Two main structural differences are observed in that the N-terminal arm of PrsA is substantially shortened relative to the trigger factor and SurA and in that PrsA is found to dimerize in a unique fashion via its NC domain. Dimerization leads to a large, bowl-shaped crevice, which might be involved in vivo in protecting substrate proteins from aggregation. NMR experiments reveal a direct, dynamic interaction of both the parvulin and the NC domain with secretion propeptides, which have been implicated in substrate targeting to PrsA.


Assuntos
Proteínas de Bactérias/química , Lipoproteínas/química , Proteínas de Membrana/química , Multimerização Proteica , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Ligação Proteica
4.
Biochim Biophys Acta ; 1850(10): 1973-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25542300

RESUMO

BACKGROUND: Prolyl cis/trans isomerizations have long been known as critical and rate-limiting steps in protein folding. RESULTS: Now it is clear that they are also used as slow conformational switches and molecular timers in the regulation of protein activity. Here we describe several such proline switches and how they are regulated. CONCLUSIONS AND GENERAL SIGNIFICANCE: Prolyl isomerizations can function as attenuators and provide allosteric systems with a molecular memory. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.


Assuntos
Prolina/química , Dobramento de Proteína , Proteínas/química , Regulação Alostérica/fisiologia , Animais , Humanos , Prolina/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo
5.
J Mol Biol ; 426(24): 4087-4098, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25451030

RESUMO

Mia40 (a mitochondrial import and assembly protein) catalyzes disulfide bond formation in proteins in the mitochondrial intermembrane space. By using Cox17 (a mitochondrial copper-binding protein) as a natural substrate, we discovered that, in the presence of Mia40, the formation of native disulfides is strongly favored. The catalytic mechanism of Mia40 involves a functional interplay between the chaperone site and the catalytic disulfide. Mia40 forms a specific native disulfide in Cox17 much more rapidly than other disulfides, in particular, non-native ones, which originates from the recently described high affinity for hydrophobic regions near target cysteines and the long lifetime of the mixed disulfide. In addition to its thiol oxidase function, Mia40 is active also as a disulfide reductase and isomerase. We found that species with inadvertently formed incorrect disulfides are rebound by Mia40 and reshuffled, revealing a proofreading mechanism that is steered by the conformational folding of the substrate protein.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Biocatálise , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cobre , Dissulfetos/química , Dissulfetos/metabolismo , Eletroforese em Gel de Poliacrilamida , Isomerismo , Cinética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação de Sentido Incorreto , Oxirredução , Oxirredutases/genética , Isomerases de Dissulfetos de Proteínas/genética , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Compostos de Sulfidrila/metabolismo
6.
ACS Chem Biol ; 9(9): 2049-57, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24983157

RESUMO

Mia40 catalyzes oxidative protein folding in mitochondria. It contains a unique catalytic CPC dithiol flanked by a hydrophobic groove, and unlike other oxidoreductases, it forms long-lived mixed disulfides with substrates. We show that this distinctive property originates neither from particular properties of mitochondrial substrates nor from the CPC motif of Mia40. The catalytic cysteines of Mia40 display unusually low chemical reactivity, as expressed in conventional pK values and reduction potentials. The stability of the mixed disulfide intermediate is coupled energetically with hydrophobic interactions between Mia40 and the substrate. Based on these properties, we suggest a mechanism for Mia40, where the hydrophobic binding site is employed to select a substrate thiol for forming the initial mixed disulfide. Its long lifetime is used to retain partially folded proteins in the mitochondria and to direct folding toward forming the native disulfide bonds.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínio Catalítico , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cobre , Cisteína/metabolismo , Dissulfetos/química , Ácido Ditionitrobenzoico/química , Ácido Ditionitrobenzoico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Estabilidade Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química
7.
Nat Commun ; 5: 3041, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24407114

RESUMO

Mia40 catalyses the oxidative folding of disulphide-containing proteins in the mitochondria. The folding pathway is directed by the formation of the first mixed disulphide between Mia40 and its substrate. Here, we employ Cox17 to elucidate the molecular determinants of this reaction. Mia40 engages initially in a dynamic non-covalent enzyme-substrate complex that forms and dissociates within milliseconds. Cys36 of Cox17 forms the mixed disulphide in an extremely rapid reaction that is limited by the preceding complex formation with Mia40. Cys36 reacts much faster than the three other cysteines of Cox17, because it neighbours three hydrophobic residues. Mia40 binds preferentially to hydrophobic regions and the dynamic nature of the non-covalent complex allows rapid reorientation for an optimal positioning of the reactive cysteine. Mia40 thus uses the unique proximity between its substrate-binding site and the catalytic disulphide to select a particular cysteine for forming the critical initial mixed disulphide.


Assuntos
Cisteína/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/fisiologia , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/fisiologia , Proteínas de Transporte de Cobre , Dissulfetos , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiologia , Dados de Sequência Molecular , Oxirredução , Proteínas de Saccharomyces cerevisiae/química
8.
J Biol Chem ; 288(18): 12979-91, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23486474

RESUMO

Infection of Escherichia coli by the filamentous phage fd starts with the binding of the N2 domain of the phage gene-3-protein to an F pilus. This interaction triggers partial unfolding of the gene-3-protein, cis → trans isomerization at Pro-213, and domain disassembly, thereby exposing its binding site for the ultimate receptor TolA. The trans-proline sets a molecular timer to maintain the binding-active state long enough for the phage to interact with TolA. We elucidated the changes in structure and local stability that lead to partial unfolding and thus to the activation of the gene-3-protein for phage infection. Protein folding and TolA binding experiments were combined with real-time NMR spectroscopy, amide hydrogen exchange measurements, and phage infectivity assays. In combination, the results provide a molecular picture of how a local unfolding reaction couples with prolyl isomerization not only to generate the activated state of a protein but also to maintain it for an extended time.


Assuntos
Bacteriófago M13/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/virologia , Pili Sexual/metabolismo , Prolina/metabolismo , Desdobramento de Proteína , Proteínas Virais/metabolismo , Bacteriófago M13/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ressonância Magnética Nuclear Biomolecular , Pili Sexual/genética , Prolina/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...