Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chromatogr A ; 1714: 464554, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38065029

RESUMO

Trace substances in surface waters may threaten health and pose a risk for the aquatic environment. Moreover, separation and detection by instrumental analysis is challenging due to the low concentration and the wide range of polarities. Separation of polar and nonpolar analytes can be achieved by using stationary phases with different selectivity. Lower limits of detection of trace substances can be obtained by offline enrichment on solid phase materials. However, these practices require substantial effort and are time consuming and costly. Therefore, in this study, a column switching was developed to enrich and separate both polar and nonpolar analytes by an on-column large volume injection of aqueous samples. The column switching can significantly reduce the effort and time for analyzing trace substances without compromising on separation and detection. A reversed phase (RP) column is used to trap the nonpolar analytes. The polar analytes are enriched on a porous graphitized carbon column (PGC) coupled serially behind the RP column. A novel valve switching system is implemented to enable elution of the nonpolar analytes from the RP column and, subsequently, elution of polar analytes from the PGC column and separation on a hydrophilic interaction liquid chromatography (HILIC) column. To enable separation of polar analytes dissolved in an aqueous matrix by HILIC, the water plug that is flushed from the PGC column is diluted by dosing organic solvent directly upstream of the HILIC column. The developed method was tested by applying target analysis and non-target screening, highlighting the advantage to effectively separate and detect both polar and nonpolar compounds in a single chromatographic run. In the target analysis, the analytes, with a logD at pH 3 ranging from -2.8 to + 4.5, could be enriched and separated. Besides the 965 features in the RP phase, 572 features from real wastewater were observed in the HILIC phase which would otherwise elute in the void time in conventional one-dimensional RP methods.


Assuntos
Água , Cromatografia Líquida/métodos , Água/química , Solventes , Interações Hidrofóbicas e Hidrofílicas
2.
J Sep Sci ; 46(14): e2300076, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37287327

RESUMO

The polycyclic aromatic hydrocarbon concentration in plastic products is regulated in (European Union) No. 1272/2013. However, this only covers the end products and not intermediate substances. Therefore, a generic method was developed to analyze the polycyclic aromatic hydrocarbons listed by the Environmental Protection Agency and the European Union. This method is based on direct large volume injection from solutions of plastic additives followed by liquid chromatography coupled to fluorescence detection. The additives Irganox 1010, ureido methacrylate, and cetyl methacrylate 1618F were used as examples for method development. Two serially coupled columns allowed the matrix to be removed on the first column and the analytes to be separated on the second column. The columns were connected by an intermediate valve. The valve allowed the matrix to be diverted after the first column and water to be dosed upstream of the second column via an additional pump. This allowed samples in aqueous or organic media to be focused at the column head. An injection volume of 100 µl and online aqueous dilution of 1:3 led to a limit of detection below 1 ng/ml for 15 polycyclic aromatic hydrocarbons. Moreover, concentrations between 1.6 and 10.3 ng/ml were found in the three plastic additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...