Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(815): eabq1173, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085817

RESUMO

Type I interferons (IFNs) are key coordinators of the innate immune response to viral infection, which, through activation of the transcriptional regulators STAT1 and STAT2 (STAT1/2) in bystander cells, induce the expression of IFN-stimulated genes (ISGs). Here, we showed that in cells transfected with poly(I:C), an analog of viral RNA, the transcriptional activity of STAT1/2 was terminated because of depletion of the interferon-ß (IFN-ß) receptor, IFNAR. Activation of RNase L and PKR, products of two ISGs, not only hindered the replenishment of IFNAR but also suppressed negative regulators of IRF3 and NF-κB, consequently promoting IFNB transcription. We incorporated these findings into a mathematical model of innate immunity. By coupling signaling through the IRF3-NF-κB and STAT1/2 pathways with the activities of RNase L and PKR, the model explains how poly(I:C) switches the transcriptional program from being STAT1/2 induced to being IRF3 and NF-κB induced, which converts IFN-ß-responding cells to IFN-ß-secreting cells.


Assuntos
Interferon beta , RNA , Interferon beta/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Imunidade Inata , Modelos Teóricos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
2.
PLoS Pathog ; 19(9): e1011597, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37669278

RESUMO

When infected with a virus, cells may secrete interferons (IFNs) that prompt nearby cells to prepare for upcoming infection. Reciprocally, viral proteins often interfere with IFN synthesis and IFN-induced signaling. We modeled the crosstalk between the propagating virus and the innate immune response using an agent-based stochastic approach. By analyzing immunofluorescence microscopy images we observed that the mutual antagonism between the respiratory syncytial virus (RSV) and infected A549 cells leads to dichotomous responses at the single-cell level and complex spatial patterns of cell signaling states. Our analysis indicates that RSV blocks innate responses at three levels: by inhibition of IRF3 activation, inhibition of IFN synthesis, and inhibition of STAT1/2 activation. In turn, proteins coded by IFN-stimulated (STAT1/2-activated) genes inhibit the synthesis of viral RNA and viral proteins. The striking consequence of these inhibitions is a lack of coincidence of viral proteins and IFN expression within single cells. The model enables investigation of the impact of immunostimulatory defective viral particles and signaling network perturbations that could potentially facilitate containment or clearance of the viral infection.


Assuntos
Vírus Sincicial Respiratório Humano , Viroses , Humanos , Imunidade Inata , Interferons , Proteínas Virais
3.
PLoS Comput Biol ; 19(5): e1011155, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216347

RESUMO

Living cells utilize signaling pathways to sense, transduce, and process information. As the extracellular stimulation often has rich temporal characteristics which may govern dynamic cellular responses, it is important to quantify the rate of information flow through the signaling pathways. In this study, we used an epithelial cell line expressing a light-activatable FGF receptor and an ERK activity reporter to assess the ability of the MAPK/ERK pathway to transduce signal encoded in a sequence of pulses. By stimulating the cells with random light pulse trains, we demonstrated that the MAPK/ERK channel capacity is at least 6 bits per hour. The input reconstruction algorithm detects the light pulses with 1-min accuracy 5 min after their occurrence. The high information transmission rate may enable the pathway to coordinate multiple processes including cell movement and respond to rapidly varying stimuli such as chemoattracting gradients created by other cells.


Assuntos
Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Linhagem Celular , Sistema de Sinalização das MAP Quinases/fisiologia , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
4.
J Virol ; 96(22): e0134122, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326278

RESUMO

We observed the interference between two prevalent respiratory viruses, respiratory syncytial virus (RSV) and influenza A virus (IAV) (H1N1), and characterized its molecular underpinnings in alveolar epithelial cells (A549). We found that RSV induces higher levels of interferon beta (IFN-ß) production than IAV and that IFN-ß priming confers higher-level protection against infection with IAV than with RSV. Consequently, we focused on the sequential infection scheme of RSV and then IAV. Using A549 wild-type (WT), IFNAR1 knockout (KO), IFNLR1 KO, and IFNAR1-IFNLR1 double-KO cell lines, we found that both IFN-ß and IFN-λ are necessary for maximum protection against subsequent infection. Immunostaining revealed that preinfection with RSV partitions the cell population into a subpopulation susceptible to subsequent infection with IAV and an IAV-proof subpopulation. Strikingly, the susceptible cells turned out to be those already compromised and efficiently expressing RSV, whereas the bystander, interferon-primed cells are resistant to IAV infection. Thus, virus-virus exclusion at the cell population level is not realized through direct competition for a shared ecological niche (single cell) but rather is achieved with the involvement of specific cytokines induced by the host's innate immune response. IMPORTANCE Influenza A virus (IAV) and respiratory syncytial virus (RSV) are common recurrent respiratory infectants that show a relatively high coincidence. We demonstrated that preinfection with RSV partitions the cell population into a subpopulation susceptible to subsequent infection with IAV and an IAV-proof subpopulation. The susceptible cells are those already compromised and efficiently expressing RSV, whereas the bystander cells are resistant to IAV infection. The cross-protective effect critically depends on IFN-ß and IFN-λ signaling and thus ensues when the proportion of cells preinfected with RSV is relatively low yet sufficient to trigger a pervasive antiviral state in bystander cells. Our study suggests that mild, but not severe, respiratory infections may have a short-lasting protective role against more dangerous respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Vírus Sincicial Respiratório Humano , Humanos , SARS-CoV-2 , Interferons/metabolismo , Interferon lambda
5.
Viruses ; 14(2)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35215887

RESUMO

Omicron, the novel highly mutated SARS-CoV-2 Variant of Concern (VOC, Pango lineage B.1.1.529) was first collected in early November 2021 in South Africa. By the end of November 2021, it had spread and approached fixation in South Africa, and had been detected on all continents. We analyzed the exponential growth of Omicron over four-week periods in the two most populated of South Africa's provinces, Gauteng and KwaZulu-Natal, arriving at the doubling time estimates of, respectively, 3.3 days (95% CI: 3.2-3.4 days) and 2.7 days (95% CI: 2.3-3.3 days). Similar or even shorter doubling times were observed in other locations: Australia (3.0 days), New York State (2.5 days), UK (2.4 days), and Denmark (2.0 days). Log-linear regression suggests that the spread began in Gauteng around 11 October 2021; however, due to presumable stochasticity in the initial spread, this estimate can be inaccurate. Phylogenetics-based analysis indicates that the Omicron strain started to diverge between 6 October and 29 October 2021. We estimated that the weekly growth of the ratio of Omicron to Delta is in the range of 7.2-10.2, considerably higher than the growth of the ratio of Delta to Alpha (estimated to be in in the range of 2.5-4.2), and Alpha to pre-existing strains (estimated to be in the range of 1.8-2.7). High relative growth does not necessarily imply higher Omicron infectivity. A two-strain SEIR model suggests that the growth advantage of Omicron may stem from immune evasion, which permits this VOC to infect both recovered and fully vaccinated individuals. As we demonstrated within the model, immune evasion is more concerning than increased transmissibility, because it can facilitate larger epidemic outbreaks.


Assuntos
COVID-19/transmissão , Evasão da Resposta Imune , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Replicação Viral/imunologia , Austrália/epidemiologia , COVID-19/epidemiologia , Genoma Viral , Humanos , New York/epidemiologia , Filogenia , SARS-CoV-2/genética , Análise de Sequência de DNA/estatística & dados numéricos , África do Sul/epidemiologia , Fatores de Tempo
6.
Viruses ; 13(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804556

RESUMO

The novel SARS-CoV-2 Variant of Concern (VOC)-202012/01 (also known as B.1.1.7), first collected in United Kingdom on 20 September 2020, is a rapidly growing lineage that in January 2021 constituted 86% of all SARS-CoV-2 genomes sequenced in England. The VOC has been detected in 40 out of 46 countries that reported at least 50 genomes in January 2021. We have estimated that the replicative advantage of the VOC is in the range 1.83-2.18 [95% CI: 1.71-2.40] with respect to the 20A.EU1 variant that dominated in England in November 2020, and in range 1.65-1.72 [95% CI: 1.46-2.04] in Wales, Scotland, Denmark, and USA. As the VOC strain will likely spread globally towards fixation, it is important to monitor its molecular evolution. We have estimated growth rates of expanding mutations acquired by the VOC lineage to find that the L18F substitution in spike has initiated a fast growing VOC substrain. The L18F substitution is of significance because it has been found to compromise binding of neutralizing antibodies. Of concern are immune escape mutations acquired by the VOC: E484K, F490S, S494P (in the receptor binding motif of spike) and Q677H, Q675H (in the proximity of the polybasic cleavage site at the S1/S2 boundary). These mutants may hinder efficiency of existing vaccines and expand in response to the increasing after-infection or vaccine-induced seroprevalence.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Replicação Viral , Motivos de Aminoácidos , Humanos , Mutação , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Sci Rep ; 11(1): 2425, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510274

RESUMO

Countries worldwide have adopted various strategies to minimize the socio-economic impact of the ongoing COVID-19 pandemic. Stringency of imposed measures universally reflects the standpoint from which protecting public health and avoiding damage to economy are seen as contradictory objectives. Based on epidemic trajectories of 25 highly developed countries and 10 US states in the (mobility reduction)-(reproduction number) plane we showed that delay in imposition of nation-wide quarantine elevates the number of infections and deaths, surge of which inevitably has to be suppressed by stringent and sustained lockdown. As a consequence, cumulative mobility reduction and population-normalized cumulative number of COVID-19-associated deaths are significantly correlated and this correlation increases with time. Overall, we demonstrated that, as long as epidemic suppression is the aim, the trade-off between the death toll and economic loss is illusory: high death toll correlates with deep and long-lasting lockdown causing a severe economic downturn.


Assuntos
COVID-19/epidemiologia , Quarentena/economia , COVID-19/economia , Controle de Doenças Transmissíveis/métodos , Países Desenvolvidos/estatística & dados numéricos , Humanos , Pandemias/economia , Pandemias/prevenção & controle , Saúde Pública , Quarentena/estatística & dados numéricos , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
8.
R Soc Open Sci ; 7(9): 200786, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33047040

RESUMO

The basic reproduction number R 0 of the coronavirus disease 2019 has been estimated to range between 2 and 4. Here, we used an SEIR model that properly accounts for the distribution of the latent period and, based on empirical estimates of the doubling time in the near-exponential phases of epidemic progression in China, Italy, Spain, France, UK, Germany, Switzerland and New York State, we estimated that R 0 lies in the range 4.7-11.4. We explained this discrepancy by performing stochastic simulations of model dynamics in a population with a small proportion of super-spreaders. The simulations revealed two-phase dynamics, in which an initial phase of relatively slow epidemic progression diverts to a faster phase upon appearance of infectious super-spreaders. Early estimates obtained for this initial phase may suggest lower R 0 .

9.
J R Soc Interface ; 16(152): 20180792, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30836891

RESUMO

Two important signalling pathways of NF-κB and ERK transmit merely 1 bit of information about the level of extracellular stimulation. It is thus unclear how such systems can coordinate complex cell responses to external cues. We analyse information transmission in the MAPK/ERK pathway that converts both constant and pulsatile EGF stimulation into pulses of ERK activity. Based on an experimentally verified computational model, we demonstrate that, when input consists of sequences of EGF pulses, transmitted information increases nearly linearly with time. Thus, pulse-interval transcoding allows more information to be relayed than the amplitude-amplitude transcoding considered previously for the ERK and NF-κB pathways. Moreover, the information channel capacity C, or simply bitrate, is not limited by the bandwidth B = 1/ τ, where τ ≈ 1 h is the relaxation time. Specifically, when the input is provided in the form of sequences of short binary EGF pulses separated by intervals that are multiples of τ/ n (but not shorter than τ), then for n = 2, C ≈ 1.39 bit h-1; and for n = 4, C ≈ 1.86 bit h-1. The capability to respond to random sequences of EGF pulses enables cells to propagate spontaneous ERK activity waves across tissue.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Biológicos , Animais , Humanos
10.
Phys Rev E ; 98(2-1): 022401, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253540

RESUMO

In bistable reaction-diffusion systems, transitions between stable states typically occur on timescales orders of magnitude longer than the chemical equilibration time. Estimation of transition rates within explicit Brownian dynamics simulations is computationally prohibitively costly. We present a method that exploits a single trajectory, generated by a prior simulation of diffusive motions of molecules, to sample chemical kinetic processes on timescales several orders of magnitude longer than the duration of the diffusive trajectory. In this approach, we "loop" the diffusive trajectory by transferring chemical states of the molecules from the last to the first time step of the trajectory. Trajectory looping can be applied to enhance sampling of rare events in biochemical systems in which the number of reacting molecules is constant, as in cellular signal transduction pathways. As an example, we consider a bistable system of autophosphorylating kinases, for which we calculate state-to-state transition rates and traveling wave velocities. We provide an open-source implementation of the method.

11.
Nat Commun ; 9(1): 493, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402958

RESUMO

The innate immune system processes pathogen-induced signals into cell fate decisions. How information is turned to decision remains unknown. By combining stochastic mathematical modelling and experimentation, we demonstrate that feedback interactions between the IRF3, NF-κB and STAT pathways lead to switch-like responses to a viral analogue, poly(I:C), in contrast to pulse-like responses to bacterial LPS. Poly(I:C) activates both IRF3 and NF-κB, a requirement for induction of IFNß expression. Autocrine IFNß initiates a JAK/STAT-mediated positive-feedback stabilising nuclear IRF3 and NF-κB in first responder cells. Paracrine IFNß, in turn, sensitises second responder cells through a JAK/STAT-mediated positive feedforward pathway that upregulates the positive-feedback components: RIG-I, PKR and OAS1A. In these sensitised cells, the 'live-or-die' decision phase following poly(I:C) exposure is shorter-they rapidly produce antiviral responses and commit to apoptosis. The interlinked positive feedback and feedforward signalling is key for coordinating cell fate decisions in cellular populations restricting pathogen spread.


Assuntos
Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon beta/imunologia , Janus Quinases/imunologia , NF-kappa B/imunologia , Fatores de Transcrição STAT/imunologia , 2',5'-Oligoadenilato Sintetase , Animais , Linhagem Celular , Proteína DEAD-box 58/imunologia , Retroalimentação Fisiológica , Técnicas de Inativação de Genes , Imunidade Inata/efeitos dos fármacos , Indutores de Interferon/farmacologia , Fator Regulador 3 de Interferon/efeitos dos fármacos , Camundongos , NF-kappa B/efeitos dos fármacos , Poli I-C/farmacologia , Fator de Transcrição STAT1/genética , Transdução de Sinais , Fator de Transcrição RelA/genética , Regulação para Cima , eIF-2 Quinase/imunologia
12.
Sci Rep ; 7(1): 15926, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162874

RESUMO

The NF-κB pathway is known to transmit merely 1 bit of information about stimulus level. We combined experimentation with mathematical modeling to elucidate how information about TNF concentration is turned into a binary decision. Using Kolmogorov-Smirnov distance, we quantified the cell's ability to discern 8 TNF concentrations at each step of the NF-κB pathway, to find that input discernibility decreases as signal propagates along the pathway. Discernibility of low TNF concentrations is restricted by noise at the TNF receptor level, whereas discernibility of high TNF concentrations it is restricted by saturation/depletion of downstream signaling components. Consequently, signal discernibility is highest between 0.03 and 1 ng/ml TNF. Simultaneous exposure to TNF or LPS and a translation inhibitor, cycloheximide, leads to prolonged NF-κB activation and a marked increase of transcript levels of NF-κB inhibitors, IκBα and A20. The impact of cycloheximide becomes apparent after the first peak of nuclear NF-κB translocation, meaning that the NF-κB network not only relays 1 bit of information to coordinate the all-or-nothing expression of early genes, but also over a longer time course integrates information about other stimuli. The NF-κB system should be thus perceived as a feedback-controlled decision-making module rather than a simple information transmission channel.


Assuntos
Processamento Eletrônico de Dados , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Citoplasma/metabolismo , Fluorescência , Lipopolissacarídeos/farmacologia , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia
13.
Bioinformatics ; 33(22): 3667-3669, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29036531

RESUMO

SUMMARY: Rule-based modeling is a powerful approach for studying biomolecular site dynamics. Here, we present SPATKIN, a general-purpose simulator for rule-based modeling in two spatial dimensions. The simulation algorithm is a lattice-based method that tracks Brownian motion of individual molecules and the stochastic firing of rule-defined reaction events. Because rules are used as event generators, the algorithm is network-free, meaning that it does not require to generate the complete reaction network implied by rules prior to simulation. In a simulation, each molecule (or complex of molecules) is taken to occupy a single lattice site that cannot be shared with another molecule (or complex). SPATKIN is capable of simulating a wide array of membrane-associated processes, including adsorption, desorption and crowding. Models are specified using an extension of the BioNetGen language, which allows to account for spatial features of the simulated process. AVAILABILITY AND IMPLEMENTATION: The C ++ source code for SPATKIN is distributed freely under the terms of the GNU GPLv3 license. The source code can be compiled for execution on popular platforms (Windows, Mac and Linux). An installer for 64-bit Windows and a macOS app are available. The source code and precompiled binaries are available at the SPATKIN Web site (http://pmbm.ippt.pan.pl/software/spatkin). CONTACT: spatkin.simulator@gmail.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Software , Algoritmos
14.
Sci Signal ; 10(469)2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270557

RESUMO

Downstream of growth factor receptors and of the guanine triphosphatase (GTPase) RAS, heterodimers of the serine/threonine kinases BRAF and RAF1 are critical upstream kinases and activators of the mitogen-activated protein kinase (MAPK) module containing the mitogen-activated and extracellular signal-regulated kinase kinase (MEK) and their targets, the extracellular signal-regulated kinase (ERK) family. Either direct or scaffold protein-mediated interactions among the components of the ERK module (the MAPKKKs BRAF and RAF1, MEK, and ERK) facilitate signal transmission. RAF1 also has essential functions in the control of tumorigenesis and migration that are mediated through its interaction with the kinase ROKα, an effector of the GTPase RHO and regulator of cytoskeletal rearrangements. We combined mutational and kinetic analysis with mathematical modeling to show that the interaction of RAF1 with ROKα is coordinated with the role of RAF1 in the ERK pathway. We found that the phosphorylated form of RAF1 that interacted with and inhibited ROKα was generated during the interaction of RAF1 with the ERK module. This mechanism adds plasticity to the ERK pathway, enabling signal diversification at the level of both ERK and RAF. Furthermore, by connecting ERK activation with the regulation of ROKα and cytoskeletal rearrangements by RAF1, this mechanism has the potential to precisely coordinate the proper timing of proliferation with changes in cell shape, adhesion, or motility.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Embrião de Mamíferos/citologia , Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Immunoblotting , Camundongos Knockout , Ligação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/genética , Interferência de RNA , Proteínas ras/genética , Quinases Associadas a rho/genética
15.
Sci Rep ; 7: 38244, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045041

RESUMO

We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor to investigate how interlinked positive and negative feedback loops process EGF signals into ERK pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy among negative feedback loops, such that the effect of a negative feedback depends on its position with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback involving slow-diffusing membrane components with slower negative feedbacks involving faster diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.


Assuntos
Retroalimentação Fisiológica , Sistema de Sinalização das MAP Quinases , Simulação por Computador , Receptores ErbB/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação , Quinases raf/metabolismo , Proteínas ras/metabolismo
16.
Biol Direct ; 11(1): 61, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27835978

RESUMO

BACKGROUND: Importins and exportins influence gene expression by enabling nucleocytoplasmic shuttling of transcription factors. A key transcription factor of innate immunity, NF-κB, is sequestered in the cytoplasm by its inhibitor, IκBα, which masks nuclear localization sequence of NF-κB. In response to TNFα or LPS, IκBα is degraded, which allows importins to bind NF-κB and shepherd it across nuclear pores. NF-κB nuclear activity is terminated when newly synthesized IκBα enters the nucleus, binds NF-κB and exportin which directs the complex to the cytoplasm. Although importins/exportins are known to regulate spatiotemporal kinetics of NF-κB and other transcription factors governing innate immunity, the mechanistic details of these interactions have not been elucidated and mathematically modelled. RESULTS: Based on our quantitative experimental data, we pursue NF-κB system modelling by explicitly including NF-κB-importin and IκBα-exportin binding to show that the competition between importins and IκBα enables NF-κB nuclear translocation despite high levels of IκBα. These interactions reduce the effective relaxation time and allow the NF-κB regulatory pathway to respond to recurrent TNFα pulses of 45-min period, which is about twice shorter than the characteristic period of NF-κB oscillations. By stochastic simulations of model dynamics we demonstrate that randomly appearing, short TNFα pulses can be converted to essentially digital pulses of NF-κB activity, provided that intervals between input pulses are not shorter than 1 h. CONCLUSIONS: By including interactions involving importin-α and exportin we bring the modelling of spatiotemporal kinetics of transcription factors to a more mechanistic level. Basing on the analysis of the pursued model we estimated the information transmission rate of the NF-κB pathway as 1 bit per hour. REVIEWERS: This article was reviewed by Marek Kimmel, James Faeder and William Hlavacek.


Assuntos
Imunidade Inata/genética , Carioferinas/química , Subunidade p50 de NF-kappa B/química , Transdução de Sinais , Animais , Células Cultivadas , Fibroblastos , Regulação da Expressão Gênica , Camundongos
17.
PLoS Comput Biol ; 12(2): e1004787, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26928575

RESUMO

The p53 transcription factor is a regulator of key cellular processes including DNA repair, cell cycle arrest, and apoptosis. In this theoretical study, we investigate how the complex circuitry of the p53 network allows for stochastic yet unambiguous cell fate decision-making. The proposed Markov chain model consists of the regulatory core and two subordinated bistable modules responsible for cell cycle arrest and apoptosis. The regulatory core is controlled by two negative feedback loops (regulated by Mdm2 and Wip1) responsible for oscillations, and two antagonistic positive feedback loops (regulated by phosphatases Wip1 and PTEN) responsible for bistability. By means of bifurcation analysis of the deterministic approximation we capture the recurrent solutions (i.e., steady states and limit cycles) that delineate temporal responses of the stochastic system. Direct switching from the limit-cycle oscillations to the "apoptotic" steady state is enabled by the existence of a subcritical Neimark-Sacker bifurcation in which the limit cycle loses its stability by merging with an unstable invariant torus. Our analysis provides an explanation why cancer cell lines known to have vastly diverse expression levels of Wip1 and PTEN exhibit a broad spectrum of responses to DNA damage: from a fast transition to a high level of p53 killer (a p53 phosphoform which promotes commitment to apoptosis) in cells characterized by high PTEN and low Wip1 levels to long-lasting p53 level oscillations in cells having PTEN promoter methylated (as in, e.g., MCF-7 cell line).


Assuntos
Retroalimentação Fisiológica/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Humanos
18.
J Chem Phys ; 143(21): 215102, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646890

RESUMO

Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.


Assuntos
Biocatálise , Simulação por Computador , Modelos Biológicos , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Difusão , Humanos , Cinética , Método de Monte Carlo , Fosforilação
19.
Artigo em Inglês | MEDLINE | ID: mdl-25768526

RESUMO

We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can convert only these substrates which remain in contact with opposing enzymes. In the most studied regime of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.


Assuntos
Modelos Biológicos , Fosforilação , Simulação por Computador , Difusão , Cinética , Membranas/metabolismo , Método de Monte Carlo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/metabolismo
20.
PLoS One ; 9(12): e116050, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25545504

RESUMO

Accumulating data indicate that cancer stem cells contribute to tumor chemoresistance and their persistence alters clinical outcome. Our previous study has shown that ovarian cancer may be initiated by ovarian cancer initiating cells (OCIC) characterized by surface antigen CD44 and c-KIT (CD117). It has been experimentally demonstrated that a microRNA, namely miR-193a, targets c-KIT mRNA for degradation and could play a crucial role in ovarian cancer development. How miR-193a is regulated is poorly understood and the emerging picture is complex. To unravel this complexity, we propose a mathematical model to explore how estrogen-mediated up-regulation of another target of miR-193a, namely E2F6, can attenuate the function of miR-193a in two ways, one through a competition of E2F6 and c-KIT transcripts for miR-193a, and second by binding of E2F6 protein, in association with a polycomb complex, to the promoter of miR-193a to down-regulate its transcription. Our model predicts that this bimodal control increases the expression of c-KIT and that the second mode of epigenetic regulation is required to generate a switching behavior in c-KIT and E2F6 expressions. Additional analysis of the TCGA ovarian cancer dataset demonstrates that ovarian cancer patients with low expression of EZH2, a polycomb-group family protein, show positive correlation between E2F6 and c-KIT. We conjecture that a simultaneous EZH2 inhibition and anti-estrogen therapy can constitute an effective combined therapeutic strategy against ovarian cancer.


Assuntos
Epigênese Genética , MicroRNAs/genética , Modelos Genéticos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Sequência de Bases , Linhagem Celular Tumoral , Bases de Dados Genéticas , Fator de Transcrição E2F6/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-kit/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...