Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Langmuir ; 33(15): 3742-3754, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28358489

RESUMO

The adsorption of three homo-tripeptides, HHH, YYY, and SSS, at the aqueous Au interface is investigated, using molecular dynamics simulations. We find that consideration of surface facet effects, relevant to experimental conditions, opens up new questions regarding interpretations of current experimental findings. Our well-tempered metadynamics simulations predict the rank ordering of the tripeptide binding affinities at aqueous Au(111) to be YYY > HHH > SSS. This ranking differs with that obtained from existing experimental data which used surface-immobilized Au nanoparticles as the target substrate. The influence of Au facet on these experimental findings is then considered, via our binding strength predictions of the relevant amino acids at aqueous Au(111) and Au(100)(1 × 1). The Au(111) interface supports an amino acid ranking of Tyr > HisA ≃ HisH > Ser, matching that of the tripeptides on Au(111), while the ranking on Au(100) is HisA > Ser ≃ Tyr ≃ HisH, with only HisA showing non-negligible binding. The substantial reduction in Tyr amino acid affinity for Au(100) vs Au(111) offers one possible explanation for the experimentally observed weaker adsorption of YYY on the nanoparticle-immobilized substrate compared with HHH. In a separate set of simulations, we predict the structures of the adsorbed tripeptides at the two aqueous Au facets, revealing facet-dependent differences in the adsorbed conformations. Our findings suggest that Au facet effects, where relevant, may influence the adsorption structures and energetics of biomolecules, highlighting the possible influence of the structural model used to interpret experimental binding data.


Assuntos
Água/química , Adsorção , Ouro , Simulação de Dinâmica Molecular , Propriedades de Superfície
2.
ACS Appl Mater Interfaces ; 7(22): 11991-2000, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25970133

RESUMO

Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...