Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454673

RESUMO

Plastic packaging preserves the quality of ethylene-treated bananas by generating a beneficial modified atmosphere (MA). However, petroleum-based plastics cause environmental pollution, due to their slow decomposition. Biodegradable packaging may help resolve this controversy, provided it shows adequate preservation efficacy. In this study, we tested the compostable biodegradable polyester packaging of ethylene-treated bananas in comparison with commercially available petroleum-based plastic alternatives. When compostable packaging was used in a non-perforated form, it caused hypoxic fermentation, manifested as impaired ripening, off-flavor, and excessive softening. Micro-perforation prevented fermentation and allowed MA buildup. Furthermore, no water condensation was observed in the biodegradable packages, due to their somewhat higher water vapor permeability compared to conventional plastics. The fruit weight loss in biodegradable packaging was higher than in polypropylene, but 3-4-fold lower than in open containers. The control of senescence spotting was the major advantage of microperforated biodegradable packaging, combined with the preservation of acceptable fruit firmness and flavor, and low crown rot incidence. Optimal biodegradable packages extended the shelf life of bananas by four days compared with open containers, and by two days compared with the best commercial plastic package tested. Microperforated biodegradable packages combined the advantage of improved sustainability with superior fruit preservation.

2.
Front Genet ; 12: 670929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163526

RESUMO

Phenotypic characterization of postharvest traits is essential for the breeding of high-quality fruits. To compare postharvest traits of different genetic lines, it is essential to use a reference point during fruit development that will be common to all the lines. In this study, we employed a non-destructive parameter of chlorophyll levels to establish a similar physiological age and compared several postharvest traits of ten astringent and seven non-astringent persimmon cultivars. The fruit's traits examined were astringency, weight, total soluble solids (TSS), titratable acidity (TA), chlorophyll levels (I AD ), color (hue), firmness, color development and firmness loss during storage, crack development, and susceptibility to Alternaria infection. Although the chlorophyll (I AD ) index and color (hue) showed a high correlation among mature fruits of all cultivars, the chlorophyll parameter could detect higher variability in each cultivar, suggesting that I AD is a more rigorous parameter for detecting the developmental stage. The average weight, TSS, and TA were similar between astringent and non-astringent cultivars. Cracks appeared only on a few cultivars at harvest. Resistance to Alternaria infection and firmness were lower in astringent than in non-astringent cultivars. Only the astringent cultivar "32" was resistant to infection possibly due to the existence of an efficient peel barrier. It was concluded that a high correlation existed between astringency, susceptibility to Alternaria infection, and firmness. Cracks did not correlate with astringency or firmness. The phenotypic traits evaluated in this work can be used in future breeding programs for elite persimmon fruits.

3.
J Agric Food Chem ; 69(20): 5628-5637, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983017

RESUMO

Fruits of nonastringent persimmon cultivars, as compared to astringent ones, were more resistant to Alternaria infection despite having lower polyphenol content. Metabolic analysis from the pulp of nonastringent "Shinshu", as compared to the astringent "Triumph", revealed a higher concentration of salicylic, coumaric, quinic, 5-o-feruloyl quinic, ferulic acids, ß-glucogallin, gallocatechin, catechin, and procyanidins. Selected compounds like salicylic, ferulic, and ρ-coumaric acids inhibited in vitro Alternaria growth, and higher activity was demonstrated for methyl ferulic and methyl ρ-coumaric acids. These compounds also reduced in vivo Alternaria growth and the black spot disease in stored fruits. On the other hand, methyl gallic acid was a predominant compound in the "Triumph" pulp, as compared to the "Shinshu" pulp, and it augmented Alternaria growth in vitro and in vivo. Our results might explain the high sensitivity of the cultivar "Triumph" to Alternaria. It also emphasizes that specific phenolic compounds, and not the total phenol, affect susceptibility to fungal infection.


Assuntos
Diospyros , Alternaria , Adstringentes , Frutas/química , Polifenóis/análise
4.
Hortic Res ; 8(1): 51, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642590

RESUMO

Cytokinin and gibberellic acid (GA) are growth regulators used to increase berry size in seedless grapes and it is of interest to understand their effects on the phenylpropanoid pathway and on ripening processes. GA3 and synthetic cytokinin forchlorfenuron (N-(2-chloro-4-pyridyl)-N'-phenylurea, CPPU) and their combination were applied to 6 mm diameter fruitlets of 'Sable Seedless', and berries were sampled 51 and 70 days (d) following application. All treatments increased berry size and delayed sugar accumulation and acid degradation with a stronger effect of CPPU. CPPU, but not GA, reduced berry color and the levels of anthocyanins. While CPPU reduced the levels of anthocyanins by more than 50%, the combined treatment of GA+CPPU reduced the levels by about 25% at 51 d. CPPU treatment had minor effects on flavonols content but increased the levels of monomeric flavan-3-ols by more than two-fold. Phloroglucinol analysis using HPLC showed that proanthocyanidin content was significantly increased by CPPU, whereas mean degree of polymerization was reduced from 26 to 19. Volatile analysis by GC-MS showed changes in composition with CPPU or GA treatment with potential impact on flavor. RNA-seq analysis showed that GA had a minor overall effect on the transcriptome whereas CPPU had pronounced effects on gene expression at both 51 and 70 d. Comparing the control and CPPU at similar Brix of ca. 19.7°, a reduced expression of stilbene synthases (STSs) including their regulators MYB14 and MYB15, and other phenylpropanoid-related genes was observed in CPPU-treated grapes. Overall, our study shows that CPPU had a major influence on the phenylpropanoid pathway and affected multiple ripening-related processes.

5.
Front Plant Sci ; 6: 1258, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26834766

RESUMO

Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession.

6.
Plant Physiol ; 154(4): 1929-56, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20947671

RESUMO

The abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum 'Shiran 1335') flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal. Microarray analysis using the Affymetrix Tomato GeneChip revealed changes in expression, occurring prior to and during pedicel abscission, of many genes with possible regulatory functions. They included a range of auxin- and ethylene-related transcription factors, other transcription factors and regulatory genes that are transiently induced early, 2 h after flower removal, and a set of novel AZ-specific genes. All gene expressions initiated by flower removal and leading to pedicel abscission were inhibited by indole-3-acetic acid application, while 1-methylcyclopropene pretreatment inhibited only the ethylene-induced expressions, including those induced by wound-associated ethylene signals. These results confirm our hypothesis that acquisition of ethylene sensitivity in the AZ is associated with altered expression of auxin-regulated genes resulting from auxin depletion. Our results shed light on the regulatory control of abscission at the molecular level and further expand our knowledge of auxin-ethylene cross talk during the initial controlling stages of the process.


Assuntos
Flores/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Parede Celular , Regulação da Expressão Gênica de Plantas , Cinética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...