Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884976

RESUMO

Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications.


Assuntos
Compostos Azo/química , Bloqueadores dos Canais de Potássio/química , Teoria Quântica , Tetraetilamônio/química , Termodinâmica , Fenômenos Químicos , Cinética , Estereoisomerismo
2.
Anal Chim Acta ; 1044: 138-146, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30442395

RESUMO

We report one-step in situ laser-induced synthesis of the conductive copper microstructures doped with iron, zinc, nickel, and cobalt with highly developed surface area. It was observed that the presence of chlorides of the aforementioned metals in the solutions used in our experiments increases the deposition rate and the amount of copper in the resulting deposits; it also leads to the deposit miniaturization. The laser deposition from solutions containing cobalt (II) chloride of concentration more than 0.003 M results in fabrication of copper microelectrode with better electrochemical properties than those deposited from solutions containing chlorides of other metals of the same concentration. Moreover, copper microelectrode doped with cobalt has demonstrated good reproducibility and long-run stability as well as sensitivity and selectivity towards determination of hydrogen peroxide (limit of detection-0.2 µM) and d-glucose (limit of detection-2.2 µM). Thus, in this article we have shown the opportunity to manufacture two-phase microcomposite materials with good electrical conductivity and electrochemical characteristics using in situ laser-induced metal deposition technique. These materials might be quite useful in development of new perspective sensors for non-enzymatic detection of such important analytes as hydrogen peroxide and glucose.

3.
J Phys Chem B ; 122(46): 10558-10571, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30375871

RESUMO

Ultrafast excited-state dynamics of CuCl42- in acetonitrile is studied by femtosecond broadband transient absorption spectroscopy following excitation of the complex into all ligand-field (LF or d-d) states and into the two ligand-to-metal charge transfer (LMCT) states corresponding to the most intense steady-state absorption bands. The LF excited states are found to be nonreactive. The lowest-lying 2E LF excited state has a lifetime less than 150 fs, and the lifetimes of the second (2B1) and the third (2A1) LF excited states are 1 and 5 ps, respectively. All three LF states decay directly into the ground 2B2 state. Such significant differences in excited-state decay time constants were rationalized computationally through time-dependent density functional theory (TD-DFT) computations. TD-DFT mapping of the relaxation pathway along the symmetric Cl-Cu-Cl umbrella bending vibration gives evidence for a conical intersection between the 2E excited state and the ground 2B2 state. The LMCT states decay within 200 fs with the primary deactivation mode consistent to be Cu-Cl stretch. A fraction of the CuCl42- complexes excited into the LMCT states undergoes ionic dissociation to form products that survive longer than 1 ns. The remaining fraction undergoes internal conversion, which can be viewed as back electron transfer, populating the lower vibrationally hot LF states. The LF states populated from the LMCT states exhibit the same lifetimes as the Franck-Condon LF states and likewise decay directly into the ground state.

4.
ACS Omega ; 3(7): 7555-7566, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30087916

RESUMO

Rhodopsins are seven α-helical membrane proteins that are of great importance in chemistry, biology, and modern biotechnology. Any in silico study on rhodopsin properties and functioning requires a high-quality three-dimensional structure. Due to particular difficulties with obtaining membrane protein structures from the experiment, in silico prediction of the three-dimensional rhodopsin structure based only on its primary sequence is an especially important task. For the last few years, significant progress was made in the field of protein structure prediction, especially for methods based on comparative modeling. However, the majority of this progress was made for soluble proteins and further investigations are needed to achieve similar progress for membrane proteins. In this paper, we evaluate the performance of modern protein structure prediction methodologies (implemented in the Medeller, I-TASSER, and Rosetta packages) for their ability to predict rhodopsin structures. Three widely used methodologies were considered: two general methodologies that are commonly applied to soluble proteins and a methodology that uses constraints that are specific for membrane proteins. The test pool consisted of 36 target-template pairs with different sequence similarities that was constructed on the basis of 24 experimental rhodopsin structures taken from the RCSB database. As a result, we showed that all three considered methodologies allow obtaining rhodopsin structures with the quality that is close to the crystallographic one (root mean square deviation (RMSD) of the predicted structure from the corresponding X-ray structure up to 1.5 Å) if the target-template sequence identity is higher than 40%. Moreover, all considered methodologies provided structures of average quality (RMSD < 4.0 Å) if the target-template sequence identity is higher than 20%. Such structures can be subsequently used for further investigation of molecular mechanisms of protein functioning and for the development of modern protein-based biotechnologies.

5.
J Phys Chem B ; 121(17): 4562-4568, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28384409

RESUMO

Nonradiative relaxation dynamics of CuCl42- complexes photoexcited into the highest-energy ligand-field electronic state (2A1) is studied in acetonitrile, dichloromethane, and chloroform solvents, as well as in acetonitrile-water and in acetonitrile-deuterated water mixtures. Due to ultrafast internal conversion, this excited state directly converts to the electronic ground state in dichloromethane and chloroform. The nonradiative relaxation constant is similar in anhydrous acetonitrile. Addition of water to acetonitrile solutions efficiently quenches the excited ligand-field 2A1 state. The quenching is proposed to be due to the diffusion-controlled formation of an electronically excited pentacoordinated [CuCl4H2O]2- encounter complex or a short-lived exciplex of similar structure, in which the electronic excitation energy transfers into the O-H stretch of the coordinated H2O molecule. This is followed by the dissociation of the pentacoordinated species, resulting in the reformation of the ground-state CuCl42- and free H2O molecules.

6.
Talanta ; 167: 201-207, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28340711

RESUMO

The synthesis of conductive gold and copper-gold microstructures with high developed surface based on the method of laser-induced metal deposition from solution was developed. The topology and crystallization phase of these structures were observed by means of scanning electron microscopy and X-ray diffraction, respectively. The electrochemical properties of the synthesized materials were investigated using cyclic voltamperometry and amperometry. According to the obtained results, it was found out that copper-gold microstructures demonstrate a linear dependence of Faraday current vs. concentration from 0.025 to 5µM for D-glucose and from 0.025 to 10µM for hydrogen peroxide. In turn, gold deposit exhibits a linear dependence of Faraday current vs. concentration from 0.025 to 50µM for D-glucose and from 0.025 to 1µM for hydrogen peroxide. Moreover, the synthesized materials reveal low detection limits (0.025µM) with respect to the aforementioned analytes, which is quite promising for their potential application in design and fabrication of new non-enzymatic biosensors.

7.
J Phys Chem A ; 120(11): 1833-44, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26901567

RESUMO

Photochemistry of copper(II) monochlorocomplexes in methanol and acetonitrile solutions is studied by UV-pump/broadband deep-UV-to-near-IR probe femtosecond transient absorption spectroscopy. Upon 255 and 266 nm excitation, the complexes in acetonitrile and methanol, respectively, are promoted to the excited ligand-to-metal charge transfer (LMCT) state, which has a short (sub-250 fs) lifetime. From the LMCT state, the complexes decay via internal conversion to lower-lying ligand field (LF) d-d excited states or the vibrationally hot ground electronic state. A minor fraction of the excited complexes relaxes to the LF electronic excited states, which are relatively long-lived with lifetimes >1 ns. Also, in methanol solutions, about 3% of the LMCT-excited copper(II) monochlorocomplexes dissociate forming copper(I) solvatocomplexes and chlorine atoms, which then further react forming long-lived photoproducts. In acetonitrile, about 50% of the LMCT-excited copper(II) monochlorocomplexes dissociate forming radical and ionic products in a ratio of 3:2. Another minor process observed following excitation only in methanol solutions is the re-equilibration between several forms of the copper(II) ground-state complexes present in solutions. This re-equilibration occurs on a time scale from sub-nanoseconds to nanoseconds.

8.
J Phys Chem B ; 119(28): 8754-63, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26079181

RESUMO

Copper(II) complexes are extremely labile with typical ligand exchange rate constants on the order of 10(6)-10(9) M(-1) s(-1). As a result, it is often difficult to identify the actual formation mechanism of these complexes. In this work, using UV-vis transient absorption when probing in a broad time range (20 ps to 8 µs) in conjunction with DFT/TDDFT calculations, we studied the dynamics and underlying reaction mechanisms of the formation of extremely labile copper(II) CuCl4(2-) chloro complexes from copper(II) CuCl3(-) trichloro complexes and chloride ions. These two species, produced via photochemical dissociation of CuCl4(2-) upon 420 nm excitation into the ligand-to-metal-charge-transfer electronic state, are found to recombine into parent complexes with bimolecular rate constants of (9.0 ± 0.1) × 10(7) and (5.3 ± 0.4) × 10(8) M(-1) s(-1) in acetonitrile and dichloromethane, respectively. In dichloromethane, recombination occurs via a simple one-step addition. In acetonitrile, where [CuCl3](-) reacts with the solvent to form a [CuCl3CH3CN](-) complex in less than 20 ps, recombination takes place via ligand exchange described by the associative interchange mechanism that involves a [CuCl4CH3CN](2-) intermediate. In both solvents, the recombination reaction is potential energy controlled.


Assuntos
Cobre/química , Espectrofotometria Ultravioleta/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...