Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Orthod ; 46(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37932128

RESUMO

BACKGROUND: Prevalence of adolescent obesity has markedly increased from 5.2% in 1974 to 19.7% in 2021. Understanding the impacts of obesity is important to orthodontists, as growth acceleration and greater pre-pubertal facial dimensions are seen in children with elevated body mass index (BMI). METHODS: To identify whether adolescent obesity shifts the timing and rate of craniofacial growth resulting in larger post-treatment dimensions, we evaluated cephalometric outcomes in overweight/obese (BMI > 85%, n = 168) and normal weight (n = 158) adolescents (N = 326 total). Cephalometric measurements were obtained from pre- and post-treatment records to measure growth rates and final dimensions and were statistically evaluated with repeated measures analysis of variance and linear regression models. RESULTS: Overweight and obese adolescents began and finished treatment with significantly larger, bimaxillary prognathic craniofacial dimensions, with elevated mandibular length [articulare-gnathion (Ar-Gn)], maxillary length [condylion-anterior nasal spine (Co-ANS), posterior nasal spine-ANS (PNS-ANS)], and anterior lower face height (ANS-Me), suggesting overweight children grow more overall. However, there was no difference between weight cohorts in the amount of cephalometric change during treatment, and regression analyses demonstrated no correlation between change in growth during treatment and BMI. BMI percentile was a significant linear predictor (P < 0.05) for cephalometric post-treatment outcomes, including Ar-Gn, Co-ANS, ANS-Me, upper face height percentage (UFH:total FH, inverse relationship), lower face height percentage (LFH:total FH), sella-nasion-A-point (SNA), and SN-B-point (SNB). LIMITATIONS: The study is retrospective. CONCLUSIONS: Growth begins earlier in overweight and obese adolescents and continues at a rate similar to normal-weight children during orthodontic treatment, resulting in larger final skeletal dimensions. Orthodontics could begin earlier in overweight patients to time care with growth, and clinicians can anticipate that overweight/obese patients will finish treatment with proportionally larger, bimaxillary-prognathic craniofacial dimensions.


Assuntos
Mandíbula , Obesidade Infantil , Criança , Humanos , Adolescente , Estudos Retrospectivos , Sobrepeso , Índice de Massa Corporal , Maxila , Cefalometria/métodos
2.
Methods Protoc ; 2(1)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31164601

RESUMO

A major drawback of nanocomposite scaffolds in bone tissue engineering is dimensional shrinkage after the fabrication process. Shrinkage yields gaps between the scaffold and host bone in the defect site and eventually causes failure in osteointegration by micromovement. The present study was conducted using titanium (Ti) mesh and Gelfoam® to prevent radial and axial micromovement, respectively. A critical-sized defect (CSD) was created in the center of the calvarium of Sprague Dawley rats to implant porous polydopamine-laced hydroxyapatite collagen calcium silicate (HCCS-PDA), a novel nanocomposite scaffold. Gelfoam® was applied around the edge of the defect, and then the HCCS-PDA scaffold was inserted in the defect area. Ti mesh was placed between the periosteum and skin right, above the inserted scaffold site. There were two test groups, with a fixture (Gelfoam® and Ti mesh) and without a fixture, each group contained five animals. The rats were sacrificed after three months post-operation. The explanted calvaria underwent micro-CT scanning and a push-out test to quantify osteointegration and mechanical strength between the scaffold and host bone. Histological analysis of undecalcified bone was performed by grinding resin infiltrated calvaria blocks to prepare 10 µm slices. Osteointegration was higher in the group with fixation than without fixation. Movement of the HCCS-PDA scaffold in the gap resulted in diminished osteointegration. With fixation, the movement was inhibited and osteointegration became prominent. Here we present a successful method of preventing axial and radial movement of scaffolds using Gelfoam® and Ti mesh. Applying this fixture, we expect that an HCCS-PDA scaffold can repair CSD more effectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...